Understanding Deep Neural Networks

Ruth Fong

CVPR 2020 Tutorial on Interpretable Machine Learning for Computer Vision

Saturday, 13 June 2020

Applications of Deep Learning

[Jamaludin et al., 2017; https://ai.googleblog.com/2018/12/providing-gender-specific-translations.html] ²

Interpretability tools are crucial for high-impact, high-risk applications of deep learning.

A Brief Primer on Deep Learning

Supervised Learning

[Russakovsky et al. , IJCV 2015] 4

Supervised Learning

"sheepdog"

[Russakovsky et al., IJCV 2015] 5

Deep Learning X

Network built up of layers, with weights θ connecting one layer to the next Update rule: $\theta \leftarrow \theta - \eta \frac{dL}{d\theta}$, maximizes probability of correct prediction

Deep Learning X

•••

Deep Learning X

•••

Deep Learning

•••

Research Themes

Research Themes

Fong & Vedaldi, ICCV 2017

Fong et al., ICCV 2019

"Math whiz" Clever Hans horse

12

PASCAL object detection dataset

"horse"

horse" "not

[Everingham et al., IJCV 2010; Lapuschkin et al., Nat. Commun. 2019]

ImageNet object recognition dataset

[Russakovsky et al., IJCV 2015; Shankar et al., NeurIPS Workshop 2017]

14

Face datasets

[Buolamwini & Gebru, JMLR 2018; globe image from Encyclopedia Britannica]

15

AVERAGE FACES AFRICA RWAND SENEGA AFRICA 6 FEMALE MALE MALE FEMALE FEMALE MALE

Face datasets

[Buolamwini & Gebru, JMLR 2018; globe image from Encyclopedia Britannica]

Attribution

Identify input features responsible for model decision

→ "doctor" **f**6 **f**8 **f**7 **C**5

Prior Work: Propagation-based methods

Combine network activations and gradients

Input

Gradient

Fast, but difficult to interpret

[Simonyan et al., ICLR Workshop 2014; Selvaraju et al., ICCV 2017] [Mahendran and Vedaldi, ECCV 2016; Adebayo et al., NeurIPS 2018]

Prior Work: Perturbation Approaches

Change the input and observe the effect on the output

Occlusion

[Zeiler and Fergus, ECCV 2014] ¹⁹

Prior Work: Perturbation Approaches

Change the input and observe the effect on the output

RISE

Clear meaning, but can only test a small range of occlusions

[Petsiuk et al., BMVC 2018] ²⁰

Desired Approach

-	-
	_
_	
~	
_	

Our Approach: Meaningful Perturbations

flute: 0.9973

Learn a **minimal** mask **m** to perturb input **x** that maximally affects the network's output

Our method considers a wide range of occlusion sizes and shapes.

flute: 0.0007

Learned Mask

[Fong & Vedaldi, ICCV 2017] ²²

Our Approach: Extremal Perturbations

Learn a **fixed-sized** mask **m** to perturb input **x** that maximally **preserves** the network's output

[Fong et al., ICCV 2019] 23

Concurrent work: [Kapishnikov et al., ICCV 2019]

Results

Interpretability

chocolate sauce

Mask Overlay

An explanation should be **falsifiable**.

0.610 => 0.351

0.610 => 0.015

[Fong & Vedaldi, ICCV 2017] ²⁵

Comparison

Orig Img

Mask 10%

Gradient

Guided

RISE

[Fong et al., ICCV 2019] ²⁶

Foreground evidence is usually sufficient

[Fong et al., ICCV 2019] ²⁷

Large objects are recognized by their details

[Fong et al., ICCV 2019] ²⁸

Multiple objects contribute cumulatively

Area: 20%

[Fong et al., ICCV 2019] ²⁹

Suppressing the background may overdrive the network

[Fong et al., ICCV 2019] 30

Adversarial Defense

Mask on Clean Image

Our method allows us to defend **any model** against adversarial attacks.

[Fong & Vedaldi, ICCV 2017] ³¹

Details

Regularization to mitigate artifacts network mask image v1: $\mathbf{m}^*(\lambda) = \operatorname{argmin}_{\mathbf{m}} \Phi(\mathbf{m} \otimes \mathbf{x}) + \lambda \operatorname{area}(\mathbf{m})$

v2: $\mathbf{m}^*(\lambda_1, \lambda_2) = \operatorname{argmin}_{\mathbf{m}} \mathbb{E}_{\operatorname{jitter}}[\Phi(M_{\operatorname{upsample}}(\mathbf{m}) \otimes \mathbf{x})]$ $+\lambda_1 \operatorname{area}(\mathbf{m}) + \lambda_2 \operatorname{smooth}(\mathbf{m})$

Tradeoff between attribution objective and regularization

maypole: 0.0000

Learned Mask

espresso: 0.9964

espresso: 0.0000

Learned Mask

[Fong & Vedaldi, ICCV 2017] ³³

Extremal Perturbations

A mask is optimized to maximally excite the network:

> $\operatorname{argmax} \Phi(\mathbf{m} \otimes \mathbf{x})$ m

subject to $area(\mathbf{m}) = a$

X

[Fong et al., ICCV 2019] ³⁴

Area Constraint

Optimizing w.r.t. to an area constraint is challenging Here we re-formulate it as matching **rank statistics**

subject to area $(\mathbf{m}) = a$

 $L_{area} = \|\operatorname{vecsort}(\mathbf{m}) - \mathbf{r}_a\|^2$

[Fong et al., ICCV 2019] ³⁵

Smooth Masks

$$m(v) : mask$$

$$conv(u; m; k) = \frac{1}{Z} \sum_{v \in \Omega} k(u - v)m(v)$$

$$maxconv(u; m; k) = \max_{v \in \Omega} k(u - v)m(v)$$

smoothconv(u; m; k; T) = smax_{$v \in \Omega; T$} k(u - v)m(v)•••••

[Fong et al., ICCV 2019] ³⁶

Smooth Masks

Mask parameters

Gaussian smoothing

Max-conv smoothing

Comparison with Prior Work

plo

freight car

[Fong & Vedaldi, 2017; Fong et al., ICCV 2019] ³⁸

Evaluating and using attribution heatmaps

39

Measure Performance on Weak Localization

[Zhang et al., ECCV 2016] 40

Selectivity to Output Class

[Mahendran & Vedaldi, ECCV 2016; Rebuffi et al., CVPR 2020] 41

Sensitive to Model Parameters

[Adebayo et al., NeurIPS 2018] ⁴²

Research Development: Critically design and evaluate attribution methods

General Usage: Assume a model has failures and use attribution methods to understand them

[Kindermans et al., arXiv 2017; Hooker et al., NeurIPS 2019; Yang & Kim, arXiv 2019] ⁴³

TorchRay: PyTorch interpretability library github.com/facebookresearch/torchray

O PyTorch

44

Research Themes

Fong et al., ICCV 2019

Fong & Vedaldi, CVPR 2018

Fong et al., 2020 (in prep.)

45

Intermediate Activations

[Olah et al., Distill 2018] ⁴⁶

Zeiler & Fergus, ECCV 2014 Nyugen et al., NIPS 2016

Mahendran & Vedaldi, IJCV 2016

Most prior work focuses on visualizing **single channels**.

Olah et al., Distill 2017

Zhou et al., ICLR 2015

Bau et al., CVPR 2017

A. Attributing channels in intermediate activations

Spatial Attribution

Channel Attribution

Channel Attribution

Activation "Diffing"

Original $\Phi_a(x)$

Perturbed $\mathbf{m} \otimes \Phi_a(x)$

[Olah et al., Distill 2017; Fong et al., 2019] ⁵²

B. Understanding how semantic concepts are encoded

[Fong & Vedaldi, CVPR 2018] 53

Filter-Concept Overlap

Top activated patches for specific units in AlexNet conv5 filters points to a **packing phenomenon**.

[Bau et al., CVPR 2017] 54

Filter-Concept Overlap

[Fong & Vedaldi, CVPR 2018; Olah, Github 2018] ⁵⁵

Learn **concept vectors** that across channels.

[Fong & Vedaldi, CVPR 2018; concurrent: Kim et al., ICML 2018; Zhou et al., ECCV 2018] 56

Net2Vec

describe how a concept is encoded

Probe a **network** with a **concept** dataset and learn to perform a task using activations at a given layer.

Results

Concepts per Filter

Sheep $(IoU_{set} = .21)$

AlexNet conv5 unit 66 is highly selective for various farm animals

Horse $(IoU_{set} = .21)$

Cow $(IoU_{set} = .20)$

[Fong & Vedaldi, CVPR 2018] 58

Filters per Concept

Different concepts require different number of filters for encoding.

[Agrawal et al., ECCV 2014; Fong & Vedaldi, CVPR 2018] 59

Salfervisedvilsearbieregning

[Russakovsky et al., IJCV 2015; Zhang et al., ECCV 2016] 60

Filters: Supervised vs. Self-Supervised

Performance Improvement (Single Filter → All Filters):

- Self-supervised networks: 5-6x
- Fully-supervised networks: 2-4x

Self-supervised networks encode connects more distributively.

[Fong & Vedaldi, CVPR 2018] 61

Comparing Concept Embeddings

[Fong & Vedaldi, CVPR 2018] 62

person - torso = foot

tree — wood = plant

grass + blue - green = sky

Comparing Concept Embedding Spaces

		AlexNet – ImageNet
	0	AlexNet – Places365
5	- ViSi	VGG16 – ImageNet
tio Igs	Ful oer	VGG16 — Places365
din tat	Sul	GoogLeNet – ImageNet
ment		GoogLeNet – Places365
	σ	Tracking
	I SO	Audio
М Ш	Self erv	Objectcentric
	o dn	Moving
	()	Egomotion
	_	AlexNet – ImageNet
	Sed	AlexNet – Places365
s D	-ylli Irvis	VGG16 – ImageNet
Jg tio	РЧ	VGG16 — Places365
di	Sc	GoogLeNet – ImageNet
ssific		GoogLeNet – Places365
	ð	Tracking
E E	f- vise	Audio
U –	Sel	Objectcentric
	Sup	Moving
	0,	Egomotion
Other Embeddings Word		
Word:		

Comparing Concept Embedding Spaces

	entation ddings	Fully- Supervised	AlexNet — ImageNet AlexNet — Places365 VGG16 — ImageNet VGG16 — Places365 GoogLeNet — ImageNet GoogLeNet — Places365
	Segme Embe	Self- Supervised	Tracking Audio Objectcentric Moving
Г		0,7	Egomotion
	sification beddings	Fully- Supervised	AlexNet — ImageNet AlexNet — Places365 VGG16 — ImageNet VGG16 — Places365 GoogLeNet — ImageNet GoogLeNet — Places365
	Clas Emt	Supervised	Audio Objectcentric Moving Egomotion
Other EmbeddingsWordNWord2V			

Details

BRODEN dataset

Image-level Annotations

street (scene)

flower (object) headboard (part) pink (color) metal (material)

swirly (texture)

Pixel-level Annotations

[Bau et al., CVPR 2017] 66

[Fong & Vedaldi, CVPR 2018] 67

[Fong & Vedaldi, CVPR 2018] 68

Subset: Only use top *F* filters, chosen by magnitude

[Fong & Vedaldi, CVPR 2018; Agrawal et al., ECCV 2014] 69

Single Filter [Bau et al., 2017]

Segmentation

Threshold Segmentation Choose Best Filter Activations Mask . . .

IoU = .18

[Fong & Vedaldi, CVPR 2018] 70

Classification

[Fong & Vedaldi, CVPR 2018] 71

C. Exploring activations via interactive visualizations

[Fong et al., 2020 (in prep.)] 72

Preview: Interactive Similarity Overlays

Interactive visualizations empower practitioners to easily understand model behavior.

[Fong et al., 2020 (in prep.)] 73

Live Preview

[Fong et al., 2020 (in prep.)] 74

Intermediate Activations

Channel Activations

[Olah et al., Distill 2018] 75

Preview: Interactive Similarity Overlays

7.7, 0, 103.4, 6.81, 0, 0, 0, 0, 32.0, 0, 0, 0, ...]

[Olah et al., Distill 2018] ⁷⁶

Preview: Interactive Similarity Overlays

[Fong et al., 2020 (in prep.)] 77

Research Themes

Fong et al., Sci. Reports 2018

Fong & Vedaldi, ICCVW 2019

78

Human-Guided Machine Learning

Align machine decisions with human decisions from brain activity.

[Fong et al., Sci. Reports 2018] 79

Future Work: Model Debugging

Identify and correct systematic mistakes

Future Work: Model Debugging

Identify and correct systematic mistakes

male

female

[Bolukbasi et al,. NeuriPS 2016; David et al., (in prep)]⁸¹

Research Themes

Research Themes

What is f(x) looking at?

Fong & Vedaldi, ICCV 2017

Fong et al., ICCV 2019

What & how does f(x) encode?

Fong & Vedaldi, CVPR 2018

Fong et al., 2020 (in prep.)

How can we improve f(x)?

Fong et al., Sci. Reports 2018

Fong & Vedaldi, ICCVW 2019

83

Andrea Vedaldi

Mandela Patrick

Chris Olah

Alexander Mordvintsev

Walter Scheirer

David Cox

Thank you

85