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Applications of Deep Learning

[Jamaludin et al., 2017; https://ai.googleblog.com/2018/12/providing-gender-specific-translations.html] 

Interpretability tools are crucial for high-impact, high-risk applications of deep learning.

https://ai.googleblog.com/2018/12/providing-gender-specific-translations.html
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A Brief Primer on Deep Learning
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( ), “sea snake”“alp”“soup bowl”“sheepdog”

Supervised Learning

x y

[Russakovsky et al. , IJCV 2015] 
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( ), “sheepdog”

Supervised Learning

x y

[Russakovsky et al. , IJCV 2015] 
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c1 c2 c3 c4 c5 f6 f7 f8

Deep Learning

Network built up of layers, with weights  connecting one layer to the nextθ

“sheepdog”

Update rule: , maximizes probability of correct predictionθ ← θ − η
dL
dθ

f(x)x y
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10%: “sheepdog” 
10%: “sea snake” 
10%: “alp” 
10%: “soup bowl” 
…

c1 c2 c3 c4 c5 f6 f7 f8

Deep Learning

θ ← θ − η
dL
dθ

f(x)x ŷ
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33%: “sheepdog” 
5%: “sea snake” 
8%: “alp” 
4%: “soup bowl” 
…

c1 c2 c3 c4 c5 f6 f7 f8

Deep Learning

θ ← θ − η
dL
dθ

f(x)x ŷ
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95%: “sheepdog” 
1%: “sea snake” 
2%: “alp” 
0%: “soup bowl” 
…

c1 c2 c3 c4 c5 f6 f7 f8

Deep Learning

θ ← θ − η
dL
dθ

f(x)x ŷ
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95%: “sheepdog” 
1%: “sea snake” 
2%: “alp” 
0%: “soup bowl” 
…

c1 c2 c3 c4 c5 f6 f7 f8

Research Themes
Inputs: What is f(x) 

looking at?
Internal Representation: 

What & how does f(x) encode?

θ ← θ − η
dL
dθ

Training Procedure: How 
can we improve f(x)?
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c1 c2 c3 c4 c5 f6 f7 f8

Research Themes
Inputs: What is f(x) 

looking at?

θ ← θ − η
dL
dθ

Fong & Vedaldi, ICCV 2017

Fong et al., ICCV 2019
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“Math whiz” Clever Hans horse
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PASCAL object detection dataset
[Everingham et al., IJCV 2010; Lapuschkin et al., Nat. Commun. 2019] 
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ImageNet object recognition dataset
[Russakovsky et al., IJCV 2015; Shankar et al., NeurIPS Workshop 2017] 

12 Olga Russakovsky* et al.

Fig. 4 Random selection of images in ILSVRC detection validation set. The images in the top 4 rows were taken from
ILSVRC2012 single-object localization validation set, and the images in the bottom 4 rows were collected from Flickr using
scene-level queries.

tage of all the positive examples available. The second
source (24%) is negative images which were part of the
original ImageNet collection process but voted as neg-
ative: for example, some of the images were collected
from Flickr and search engines for the ImageNet synset
“animals” but during the manual verification step did
not collect enough votes to be considered as containing
an “animal.” These images were manually re-verified
for the detection task to ensure that they did not in
fact contain the target objects. The third source (13%)

is images collected from Flickr specifically for the de-
tection task. These images were added for ILSVRC2014
following the same protocol as the second type of images
in the validation and test set. This was done to bring
the training and testing distributions closer together.
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Face datasets
[Buolamwini & Gebru, JMLR 2018; globe image from Encyclopedia Britannica] 

Gender Shades

LightestDarkest
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60o
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30o
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30o

Figure 2: The global distribution of skin color. Most Africans have darker skin while those from
Nordic countries are lighter-skinned. Image from (Encyclopedia Britannica) c�Copyright
2012 Encyclopedia Britannica.

nology (NIST) in 2015. We chose to evaluate this
dataset given the government’s involvement and
the explicit development of the benchmark to be
geographically diverse (as mentioned in Sec. 2).
At the time of assessment in April and May of
2017, the dataset consisted of 500 unique sub-
jects who are public figures. One image of each
unique subject was manually labeled with one of
six Fitzpatrick skin types (TB, 1988).

Adience is a gender classification benchmark
released in 2014 and was selected due to its re-
cency and unconstrained nature. The Adience
benchmark contains 2, 284 unique individual sub-
jects. 2, 194 of those subjects had reference im-
ages that were discernible enough to be labeled
by skin type and gender. Like the IJB-A dataset,
only one image of each subject was labeled for
skin type.

3.3. Creation of Pilot Parliaments
Benchmark

Preliminary analysis of the IJB-A and Adi-
ence benchmarks revealed overrepresentation of
lighter males, underrepresentation of darker fe-
males, and underrepresentation of darker indi-
viduals in general. We developed the Pilot Par-
liaments Benchmark (PPB) to achieve better in-
tersectional representation on the basis of gender
and skin type. PPB consists of 1270 individuals

from three African countries (Rwanda, Senegal,
South Africa) and three European countries (Ice-
land, Finland, Sweden) selected for gender parity
in the national parliaments.

Property PPB IJB-A Adience

Release Year 2017 2015 2014
#Subjects 1270 500 2284
Avg. IPD 63 pixels - -
BBox Size 141 (avg) �36 -
IM Width 160-590 - 816
IM Height 213-886 - 816

Table 1: Various image characteristics of the Pi-
lot Parliaments Benchmark compared
with prior datasets. #Subjects denotes
the number of unique subjects, the aver-
age bounding box size is given in pixels,
and IM stands for image.

Figure 1 shows example images from PPB as
well as average faces of males and females in
each country represented in the datasets. We
decided to use images of parliamentarians since
they are public figures with known identities and
photos available under non-restrictive licenses
posted on government websites. To add skin
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Gender Shades

type diversity to the dataset, we chose parlia-
mentarians from African and European coun-
tries. Fig. 2 shows an approximated distribu-
tion of average skin types around the world. As
seen in the map, African countries typically have
darker-skinned individuals whereas Nordic coun-
tries tend to have lighter-skinned citizens. Col-
onization and migration patterns nonetheless in-
fluence the phenotypic distribution of skin type
and not all Africans are darker-skinned. Simi-
larly, not all citizens of Nordic countries can be
classified as lighter-skinned.

The specific African and European countries
were selected based on their ranking for gen-
der parity as assessed by the Inter Parliamen-
tary Union (Inter Parliamentary Union Rank-
ing). Of all the countries in the world, Rwanda
has the highest proportion of women in parlia-
ment. Nordic countries were also well represented
in the top 10 nations. Given the gender parity
and prevalence of lighter skin in the region, Ice-
land, Finland, and Sweden were chosen. To bal-
ance for darker skin, the next two highest-ranking
African nations, Senegal and South Africa, were
also added.

Table 1 compares image characteristics of PPB
with IJB-A and Adience. PPB is highly con-
strained since it is composed of o�cial profile
photos of parliamentarians. These profile photos
are taken under conditions with cooperative sub-
jects where pose is relatively fixed, illumination is
constant, and expressions are neutral or smiling.
Conversely, the images in the IJB-A and Adi-
ence benchmarks are unconstrained and subject
pose, illumination, and expression by construc-
tion have more variation.

3.4. Intersectional Labeling Methodology

Skin Type Labels. We chose the Fitzpatrick
six-point labeling system to determine skin type
labels given its scientific origins. Dermatologists
use this scale as the gold standard for skin classi-
fication and determining risk for skin cancer (TB,
1988).

The six-point Fitzpatrick classification system
which labels skin as Type I to Type VI is skewed
towards lighter skin and has three categories that
can be applied to people perceived as White (Fig-
ure 2). Yet when it comes to fully representing
the sepia spectrum that characterizes the rest of

PPB

IJB-A

Adience

0% 25% 50% 75% 100%

30.323.325.021.3

4.4 16.0 20.2 59.4

7.4 6.4 44.6 41.6 %Darker Female

%Darker Male

%Lighter Female

%Ligher Male

Figure 3: The percentage of darker female,
lighter female, darker male, and lighter
male subjects in PPB, IJB-A and Adi-
ence. Only 4.4% of subjects in Adience
are darker-skinned and female in com-
parison to 21.3% in PPB.

the world, the categorizations are fairly coarse.
Nonetheless, the scale provides a scientifically
based starting point for auditing algorithms and
datasets by skin type.

Gender Labels. All evaluated companies
provided a “gender classification” feature that
uses the binary sex labels of female and male.
This reductionist view of gender does not ade-
quately capture the complexities of gender or ad-
dress transgender identities. The companies pro-
vide no documentation to clarify if their gender
classification systems which provide sex labels are
classifying gender identity or biological sex. To
label the PPB data, we use female and male la-
bels to indicate subjects perceived as women or
men respectively.

Labeling Process. For existing benchmarks,
one author labeled each image with one of six
Fitzpatrick skin types and provided gender an-
notations for the IJB-A dataset. The Adience
benchmark was already annotated for gender.
These preliminary skin type annotations on ex-
isting datasets were used to determine if a new
benchmark was needed.

More annotation resources were used to label
PPB. For the new parliamentarian benchmark,
3 annotators including the authors provided gen-
der and Fitzpatrick labels. A board-certified sur-
gical dermatologist provided the definitive labels
for the Fitzpatrick skin type. Gender labels were
determined based on the name of the parliamen-
tarian, gendered title, prefixes such as Mr or Ms,
and the appearance of the photo.

6
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Face datasets
[Buolamwini & Gebru, JMLR 2018; globe image from Encyclopedia Britannica] 
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Attribution
Identify input features responsible for model decision

“doctor” c1 c2 c3 c4 c5 f6 f7 f8

?



Combine network activations and gradients
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Prior Work: Propagation-based methods

Fast, but difficult to interpret

[Simonyan et al., ICLR Workshop 2014; Selvaraju et al., ICCV 2017]      
[Mahendran and Vedaldi, ECCV 2016; Adebayo et al., NeurIPS 2018] 

Input Gradient Grad-CAM
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90% “chocolate sauce” c1 c2 c3 c4 c5 f6 f7 f8

Prior Work: Perturbation Approaches
Change the input and observe the effect on the output

Occlusion

[Zeiler and Fergus, ECCV 2014]      

10% “chocolate sauce” 30% “chocolate sauce” “chocolate sauce” 



70% “chocolate sauce” 
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80% “chocolate sauce” c1 c2 c3 c4 c5 f6 f7 f8

Prior Work: Perturbation Approaches
Change the input and observe the effect on the output

RISE

[Petsiuk et al., BMVC 2018]      

Clear meaning, but can only test a small range of occlusions  

“chocolate sauce” 
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Desired Approach
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Our Approach: Meaningful Perturbations

[Fong & Vedaldi, ICCV 2017]      

Learn a minimal mask m to perturb input x that 
maximally affects the network’s output

Our method considers a wide range of occlusion sizes and shapes.
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Our Approach: Extremal Perturbations

[Fong et al., ICCV 2019] 

Concurrent work: [Kapishnikov et al., ICCV 2019]      

Learn a fixed-sized mask m to perturb input x that 
maximally preserves the network’s output
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Results
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Interpretability

An explanation should be falsifiable.

[Fong & Vedaldi, ICCV 2017]      



26

Comparison

[Fong et al., ICCV 2019]      
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Foreground evidence is usually sufficient

[Fong et al., ICCV 2019]      
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Large objects are recognized by their details

[Fong et al., ICCV 2019]      
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Multiple objects contribute cumulatively

[Fong et al., ICCV 2019]      
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Suppressing the background may overdrive the network

[Fong et al., ICCV 2019]      
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Adversarial Defense

Mask on  
Clean Image

Mask on 
Adv. Image

[Fong & Vedaldi, ICCV 2017]      

Our method allows us to defend any model against adversarial attacks.
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Details
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Regularization to mitigate artifacts

v1: m*(λ) = argminm Φ(m ⊗ x) + λ area(m)

v2: m*(λ1, λ2) = argminm 𝔼jitter[Φ(Mupsample(m) ⊗ x)]

+λ1 area(m) + λ2 smooth(m)

  mask
  network

  image

Tradeoff between attribution objective and regularization

[Fong & Vedaldi, ICCV 2017]      
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Extremal Perturbations

A mask is optimized to maximally 
excite the network:

argmax
m

Φ(m ⊗ x)

m

m ⊗ x

Φperturb Φ(m ⊗ x)

x

subject to area(m) = a

[Fong et al., ICCV 2019]      
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Area Constraint

Optimizing w.r.t. to an area constraint is challenging 
Here we re-formulate it as matching rank statistics

subject to area(m) = a

vectorize sort

Larea = ∥ vecsort(m) − ra∥2

m
rα

vecsort(m)

[Fong et al., ICCV 2019] 
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Smooth Masks

conv(u; m; k) =
1
Z ∑

v∈Ω

k(u − v)m(v)

maxconv(u; m; k) = max
v∈Ω

k(u − v)m(v)

smoothconv(u; m; k; T ) = smaxv∈Ω;T k(u − v)m(v)

m(v) : mask

[Fong et al., ICCV 2019] 
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Smooth Masks

[Fong et al., ICCV 2019] 
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Comparison with Prior Work

N
ew

O
ld

[Fong & Vedaldi, 2017; Fong et al., ICCV 2019]
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Evaluating and using attribution heatmaps
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Measure Performance on Weak Localization

[Zhang et al., ECCV 2016]
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Selectivity to Output Class

[Mahendran & Vedaldi, ECCV 2016; Rebuffi et al., CVPR 2020]
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Sensitive to Model Parameters

[Adebayo et al., NeurIPS 2018]
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Research Development: Critically design and evaluate attribution 
methods 

General Usage: Assume a model has failures and use attribution  
methods to understand them

[Kindermans et al., arXiv 2017; Hooker et al., NeurIPS 2019; Yang & Kim, arXiv 2019]



TorchRay: PyTorch interpretability library 

github.com/facebookresearch/torchray 
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http://github.com/facebookresearch/torchray
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c1 c2 c3 c4 c5 f6 f7 f8

Research Themes

θ ← θ − η
dL
dθ

Internal Representation: 
What & how does f(x) encode?

Fong & Vedaldi, CVPR 2018

Fong et al., ICCV 2019

Fong et al., 2020 (in prep.)



46[Olah et al., Distill 2018]

Intermediate Activations
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Olah et al., Distill 2017 Mahendran & Vedaldi, IJCV 2016 Bau et al., CVPR 2017 

Nyugen et al., NIPS 2016 Zhou et al., ICLR 2015 Zeiler & Fergus, ECCV 2014 

Most prior work focuses on visualizing single channels.
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A. Attributing channels in intermediate activations

[Fong et al., ICCV 2019] 
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Spatial Attribution

Φ

m

m ⊗ x

perturb Φ(m ⊗ x)

x

[Fong et al., ICCV 2019] 
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Channel Attribution

ΦbΦa

m

perturb

x

ΦbΦa Φ(m ⊗ x)Φ(m ⊗ x)

[Fong et al., ICCV 2019] 



51

Channel Attribution

ΦbΦa perturb

x
m ⊗ Φa(x)

Φb(m ⊗ Φa(x))

1
0
⋮
1
0
m

Φa(x)

argmax
m

Φb(m ⊗ Φa(x))

subject to area(m) = a

[Fong et al., ICCV 2019] 
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Activation “Diffing”
Original
Φa(x)

Perturbed
m ⊗ Φa(x)

[Olah et al., Distill 2017; Fong et al., 2019]
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B. Understanding how semantic concepts are encoded

[Fong & Vedaldi, CVPR 2018] 
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Filter-Concept Overlap

Top activated patches for specific units in AlexNet 
conv5 filters points to a packing phenomenon.

[Bau et al., CVPR 2017]
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Filter-Concept Overlap

filter1

concept2

concept3

concept1filter2filter1

filter3

concept1

[Fong & Vedaldi, CVPR 2018; Olah, Github 2018] 
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Net2Vec

Learn concept vectors that 
describe how a concept is encoded 
across channels. 

Probe a network with a concept 
dataset and learn to perform a task 
using activations at a given layer.

[Fong & Vedaldi, CVPR 2018; concurrent: Kim et al., ICML 2018; Zhou et al., ECCV 2018] 
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Results
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# Concepts per Filter

AlexNet conv5 unit 66 is highly 
selective for various farm animals 

Sheep 
(IoUset = .21)

Horse 
(IoUset = .21)

Cow 
(IoUset = .20)

[Fong & Vedaldi, CVPR 2018] 
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# Filters per Concept

Se
t I

oU

Number of Top Filters Used (F)

[

64 filters
8 filters

personairplane

Different concepts require different number of filters for encoding.

[Agrawal et al., ECCV 2014; Fong & Vedaldi, CVPR 2018] 
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( ), “sheepdog”

Supervised Learning

x y

[Russakovsky et al. , IJCV 2015; Zhang et al., ECCV 2016] 

Self-Supervised Learning
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# Filters: Supervised vs. Self-Supervised

 
 
 
Performance Improvement (Single Filter → All Filters): 
• Self-supervised networks: 5-6x 
• Fully-supervised networks: 2-4x 

Self-supervised networks encode connects more distributively.

[Fong & Vedaldi, CVPR 2018] 
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Comparing Concept Embeddings

wgrass

grass

green

sky

blue

grass + blue — green = sky 

tree — wood = plant 

person — torso = foot  

[Fong & Vedaldi, CVPR 2018] 
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Other Embeddings
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AlexNet — ImageNet 
AlexNet — Places365 
VGG16 — ImageNet 
VGG16 —Places365 

GoogLeNet —ImageNet 
GoogLeNet —Places365 

Tracking 
Audio 

Objectcentric 
Moving 

Egomotion 
AlexNet — ImageNet 

AlexNet — Places365 
VGG16 — ImageNet 
VGG16 —Places365 

GoogLeNet —ImageNet 
GoogLeNet —Places365 

Tracking 
Audio 

Objectcentric 
Moving 

Egomotion 
WordNet 

Word2Vec

Comparing Concept Embedding Spaces
AlexNet — ImageNet


AlexNet — Places365

VGG16 — ImageNet

VGG16 —Places365


GoogLeNet —ImageNet

GoogLeNet —Places365


Tracking

Audio


Objectcentric

Moving


Egomotion

AlexNet — ImageNet


AlexNet — Places365

VGG16 — ImageNet

VGG16 —Places365


GoogLeNet —ImageNet

GoogLeNet —Places365


Tracking

Audio


Objectcentric

Moving


Egomotion

WordNet


less similar

more similar
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Tracking 
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Comparing Concept Embedding Spaces
AlexNet — ImageNet


AlexNet — Places365

VGG16 — ImageNet

VGG16 —Places365


GoogLeNet —ImageNet

GoogLeNet —Places365


Tracking

Audio


Objectcentric

Moving


Egomotion

AlexNet — ImageNet


AlexNet — Places365

VGG16 — ImageNet

VGG16 —Places365


GoogLeNet —ImageNet

GoogLeNet —Places365


Tracking

Audio


Objectcentric

Moving


Egomotion

WordNet


less similar

more similar

Other Embeddings

WordNet

Word2Vec
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Details
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BRODEN dataset
Pixel-level AnnotationsImage-level Annotations

[Bau et al., CVPR 2017]     



67

Segmentation

……

Threshold  
Activations

…

× ∑
w2

wK

w1

×

×

Linearly Combine 
Activations

Extract 
Activations

IoU = .77

Segmentation 
Mask

c1 c2 c3 c4 c5 f6 f7 f8

[Fong & Vedaldi, CVPR 2018] 
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Segmentation

……

Threshold  
Activations

…

× ∑
w2

wK

w1

×

×

Linearly Combine 
Activations

Extract 
Activations

IoU = .77

Segmentation 
Mask

c1 c2 c3 c4 c5 f6 f7 f8

Concept Vector
wdog =

⎡

⎢

⎢

⎣

w1

w2

. . .

wK

⎤

⎥

⎥

⎦

[Fong & Vedaldi, CVPR 2018] 



wdog,F =

⎡

⎣

w1

. . .

wF

⎤

⎦
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Segmentation

……

Threshold  
Activations

∑

Linearly Combine 
Activations

Extract 
Activations

IoU = .63

Segmentation 
Mask

c1 c2 c3 c4 c5 f6 f7 f8

…

w1×

× wF

Concept Vector

Subset:  
Only use top F filters,  
chosen by magnitude 

(e.g., F = 4)

[Fong & Vedaldi, CVPR 2018; Agrawal et al., ECCV 2014] 
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Segmentation

……

Threshold  
Activations Choose Best Filter

Extract 
Activations

IoU = .18

Segmentation 
Mask

c1 c2 c3 c4 c5 f6 f7 f8

Single Filter 
[Bau et al., 2017]

Filter 169

[Fong & Vedaldi, CVPR 2018] 
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Classification

… …

× ∑
w2

wK

w1

×

×

Linearly Combine 
Activations (+bias)

Extract 
Activations

Classification 
Prediction

c1 c2 c3 c4 c5 f6 f7 f8

∑

∑

∑

ā1

ā2

āK

Global Average 
Pooling

+b

{dog, no dog}

Concept Vector
wdog =

⎡

⎢

⎢

⎣

w1

w2

. . .

wK

⎤

⎥

⎥

⎦

[Fong & Vedaldi, CVPR 2018] 
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C. Exploring activations via interactive visualizations

[Fong et al., 2020 (in prep.)] 
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Preview: Interactive Similarity Overlays

[Fong et al., 2020 (in prep.)] 

Interactive visualizations empower practitioners to easily understand model behavior.
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Live Preview

[Fong et al., 2020 (in prep.)] 



75[Olah et al., Distill 2018]

Intermediate Activations
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Preview: Interactive Similarity Overlays

[Olah et al., Distill 2018]
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Preview: Interactive Similarity Overlays

x0

x1

θ

[Fong et al., 2020 (in prep.)] 
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c1 c2 c3 c4 c5 f6 f7 f8

Research Themes

θ ← θ − η
dL
dθ

Training Procedure: How 
can we improve f(x)?

Fong & Vedaldi, ICCVW 2019

Fong et al., Sci. Reports 2018

78
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Human-Guided Machine Learning

[Fong et al., Sci. Reports 2018] 

Align machine decisions with human decisions from brain activity.
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Future Work: Model Debugging
Identify and correct systematic mistakes

“doctor” c1 c2 c3 c4 c5 f6 f7 f8
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Future Work: Model Debugging
Identify and correct systematic mistakes

“doctor” c1 c2 c3 c4 c5 f6 f7 f8

male

doctor

female
θ0

θ1

male female

[Bolukbasi et al,. NeuriPS 2016; 
David et al., (in prep)] 

θ0 = θ1



82

95%: “sheepdog” 
1%: “sea snake” 
2%: “alp” 
0%: “soup bowl” 
…

c1 c2 c3 c4 c5 f6 f7 f8

Research Themes
Inputs: What is f(x) 

looking at?
Internal Representation: 

What & how does f(x) encode?

θ ← θ − η
dL
dθ

Training Procedure: How 
can we improve f(x)?



What is f(x) looking at? What & how does f(x) encode? How can we improve f(x)?
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Research Themes

Fong & Vedaldi, ICCV 2017

Fong et al., ICCV 2019

Fong & Vedaldi, CVPR 2018

Fong & Vedaldi, ICCVW 2019Fong et al., 2020 (in prep.)

Fong et al., Sci. Reports 2018
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Andrea Vedaldi Mandela Patrick Chris Olah Alexander 
Mordvintsev Walter Scheirer David Cox
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Thank you


