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Agent Embedding (AE)

Speaker: Select attribute ak from

zas = φaS(x
k
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AE module: LSTM, AE hk: LSTM hidden state

hk = LSTM(hk−1, ok)

ok: One-hot vector, the index of the non-zero entry
is ak and its value is rk.
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Policy Learning

Speaker Listener 
(color-blind)

Red beak

Speaker Listener 
(color-blind)

-

Reward

      “It’s image       ”

+1    -1
Agent 

Embedding

= Cone beak

Red beak

Cone  beak

Yellow feet
Red beak

Cone  beak

Cone  beak

Yellow feet
Red beak

Cone  beak
Red beak

Yellow feet

Cone  beak

Yellow feet

Yellow feet

Red beak

Red beak

Cone  beak

Yellow feet
Cone  beakRed beak

Yellow feet
Cone  beak

Red beak
-

Red beak
Yellow feet

Cone  beak

Yellow feet

Yellow feet

Cone  beak

or

-

Agent 
Embedding

Reward

      “It’s image       ”

+1    -1

= Cone beak Red beak

Cone  beak

Yellow feet

Red beak
-Yellow feet

Cone  beak

Concatenate image-pair difference and AE

sk =
[
φ(xkt )− φ(xkc );hk

]
Predict V (sk, ak) of using ak to describe xkt :

LV =
1

N +M

∑
N+M

MSE(V (sk, ak), rk)
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Policy Learning: Different Policies Implemented Here

1. Epsilon Greedy Policy: Randomly sample ak with prob. ε or greedily choose ak

ak = argmax
a∈A

V (sk, a)

2. Active Policy: Train using policy gradient

La =
1

N

∑
N

−R log πS(st, at) with R = − 1

M

∑
M

MSE(V (sk, ak), rk) (1)

3. Random Agent policy: Always select ak at random
4. Reactive policy: Select ak at random, if rk = −1 sample a different ak
5. Random Sampling: Select ak at random during N + greedy during M
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Showing Necessity of Agent Embeddings
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Evaluating Cluster Quality

1. Generate AE in 50K episodes

2. Perform K-Means on AE: C ′ (GT = C)

3. Evaluate: variation of information (VI)

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′)

where H: entropy, I: mutual information

• V I measures amount of information
needed to switch from C to C ′
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Conclusions

Modeling conceptual understanding is necessary to succeed in some tasks

1. Formulation for modeling other agents’ understanding

2. Allows XAI systems to tailor their explanations to the specific users

3. Learned AEs recovers a clustering over other agents’ conceptual understanding

Modeling Conceptual Understanding in Image Reference Games
Rodolfo Corona, Stephan Alaniz and Zeynep Akata

published at NeurIPS 2019
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