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Learning via Explanation Lombrozo TICS'16
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Attributes as Explanations Lampert et al. CVPR'09
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Natural Language as Explanations for Communication

What type of bird is It is a Cardinal

this? ; because it is a
red bird with a
red beak and a
black face

Why not a
Vermilion
Flycatcher?

It is not a Vermilion
Flycatcher because it
does not have

black wings.




Grounding Visual Explanations Hendricks et al. ECCV'16 & ECCV'18
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Grounding Visual Explanations

1,C

Wo

This red bird has a

red beak and a black face.

This red bird has a
black beak and a black face.
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Grounding Visual Explanations

Hendricks et al. ECCV'16 & ECCV'18
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Rational Quantitative Attribution of Beliefs, Desires and Percepts in
Human Mentalizing Baker et al. Nature'l7

Frame 1



Rational Quantitative Attribution of Beliefs, Desires and Percepts in
Human Mentalizing Baker et al. Nature'17

Frame 1 Frame 2

(A
N



Rational Quantitative Attribution of Beliefs, Desires and Percepts in
Human Mentalizing Baker et al. Nature'17

Frame 1 Frame 2 Frame 3




Rational Quantitative Attribution of Beliefs, Desires and Percepts in
Baker et al. Nature'l7
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Machine Theory of Mind Rabinowitz et al. ICML'18
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M3RL: Mind-aware Multi-agent Management Reinforcement

Shu et al. ICLR'19
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Image Reference Games with Failure in Concept Understanding
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Modeling Conceptual Understanding
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Modeling Conceptual Understanding
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Perceptual Modules (PM)

1. Extract image-level features using a CNN

2. Predict attribute-level features

¢(z) = f(CNN(z))
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Perceptual Modules (PM)

1. Extract image-level features using a CNN

2. Predict attribute-level features

¢(z) = f(CNN(z))

® cach element in d)(aj) & [O’ 1]|A| images l’_ﬁft_t_r_i!)_u_t_e_s_‘ classes
i ! Blue crown .
represents a separate attribute ey | e Eastern bluebird
. . ! Black eyes ; [T1100]
® |A|: # of visual attribute labels S , 1
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® Speaker is one: ¢g, <> | Orangebelly | < [00111]
i i Cardinal

Multiple listeners: ¢r,
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Agent Embedding (AE)

Speaker: Select attribute a; from

20 = ¢&(af) — ¢4(ah).

Listener: Select attribute a; from
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Agent Embedding (AE)

Speaker: Select attribute a; from Listener: Select attribute a; from
k k
20 = ¢§(ar) — ¢ (x2). o = o (a7) — ¢ (a1).

receives reward r, € {—1,1}

AE module: LSTM, AE hy: LSTM hidden state
M Agent e
‘I r‘:’i Embedding : :T’k.

hy = LSTM(hg—1, 0x)

% 0k One-hot vector, the index of the non-zero entry
ar= Con; beak

[]vcuowfcﬂ is ay and its value is 7.
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Policy Learning
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Policy Learning: Different Policies Implemented Here

1. Epsilon Greedy Policy: Randomly sample a; with prob. € or greedily choose ay,

ap = arg I;leajc Visg,a)

N

. Active Policy: Train using policy gradient

1 _ 1
Lo= %: —Rlogms(sy, ar) with R = —— %: MSE(V (i, ag), ) (1)

3. Random Agent policy: Always select aj at random

4. Reactive policy: Select ap at random, if 7, = —1 sample a different ay,
5. Random Sampling: Select aj at random during N + greedy during M
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Comparing Learned Policies vs Baselines
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Showing Necessity of Agent Embeddings
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Evaluating Cluster Quality

Vi
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—— Epsilon Greedy

——— Baseline - Random Clusters
—— Active

—— Random Sampling

1. Generate AE in 50K episodes
2. Perform K-Means on AE: C’ (GT = O)

3. Evaluate: variation of information (VI)
VIC,C')=H(C)+ H(C") —2I(C,C")

where H: entropy, I: mutual information

® V] measures amount of information
needed to switch from C to C’
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Modeling Conceptual Understanding Qualitative Results

Discrim. Brown back Blue underparts Rufous belly Yellow wing
Chosen Brown back Blue underparts Rufous belly Yellow wing

Game 1
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Modeling Conceptual Understanding Qualitative Results

Discrim. Brown back Blue underparts Rufous belly Yellow wing
Chosen Brown back Blue underparts Rufous belly Yellow wing
Game 1
Discrim. Orange leg Yellow belly Rufous crown Yellow belly
Chosen Spotted belly pattern  Spotted back pattern Rufous crown Solid belly pattern
Game 10
Discrim. Orange beak Yellow belly Yellow wing White belly

Chosen Duck-like shape Has eyebrow Solid belly pattern Forked tail shape

Game 100
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Conclusions

Modeling conceptual understanding is necessary to succeed in some tasks
1. Formulation for modeling other agents' understanding
2. Allows XAl systems to tailor their explanations to the specific users

3. Learned AEs recovers a clustering over other agents’ conceptual understanding

Modeling Conceptual Understanding in Image Reference Games
Rodolfo Corona, Stephan Alaniz and Zeynep Akata

published at NeurlPS 2019
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