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Why interpretability?

e Confounding: Right for the wrong reasons (Clever Hans)
* High-stakes decisions: Should patient get a biopsy?

* Troubleshooting: Can’t second-guess the reasoning process of a black box.
e Will it work if | switch equipment?
* Will it work for all types of patients?
* Can I check if it’s working on my current patient?
* |s the information that | fed into the system correct?

e Responsibility: It is the doctor’s responsibility to make a good decision.
(Isn’t it?)

The use of black box models makes all of these much worse. ‘),1)

Black box models turn computer-aided decisions into automated decisions.



"Explaining” deep NN’s with saliency maps doesn’t work

Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using
Attention Maps

“Explanation”

Do you trust the network now?

Lots of work in radiology on attention maps now...




Problem spectrum

age 45

congestive heart failure? yes
takes aspirin

smoking? no

gender M

exercise? yes

allergies? no

number of past strokes 2
diabetes? yes

Tabular: All features are interpretable

- many problems in criminal justice, healthcare,

social sciences, equipment reliability &
maintenance, etc.

- features include counts, categorical data

The Rashomon effect occurs when many different explanations exist for the same phe-

nomenon. In machine learning, Leo Breiman used this term to characterize problems where

many accurate- bul—dlﬂ erent modd\(x st to dc«”nbc llwmmc data. In this work, we Nud)
nin,

lln(l test
problems. We conside non

gxmpll and study its properties and the types of models it could con . We
present the Ruhamnn ratio as a new measure related to simplicity of model classes, which
is the ratio of the volume of the set of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-
cal learming theory. For a hicrarchy of hypothesis spaces, the Rashomon ratio can help
modelers to navigate the trade-off between simplicity and accuracy. In particular, we find
empirically that a plot of empirical risk vs. Rashomon ratio forms a characteristic I'-shaped
Rashomon curve, whose elbow seems to be a reliable model selection criterion. When the
Rashomon set is large, models that are accurate—but that also have various other useful
properties—can often be obtained. These models might obey various constraints such as
interpretability. fairness. or monotonicity.

RaW: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave



Problem spectrum

Very sparse models (trees, scoring systems)

Neural networks
With minor pre-processing, all
methods have similar performance

Tabular: Al features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability &

maintenance, etc.
- features include counts, categorical data

- pixels/voxels, words, a bit of a sound wave



Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-
nomenon. In machine learning, Leo Breiman used this term to characterize problems where
many accurate-but-different models exist to describe the same data. In this work, we study |
how the Rashomon effect can be useful for understanding the relationship between training ]
' and test perfe and the ibility that simple-yet te models exist for many e
AV

P
problems. We consider the Rashomon set—the set of almost-equally-accurate models for
a given problem—and study its properties and the types of models it could contain. We
present the Rashomon ratio as a new measure related to simplicity of model classes, which
is the ratio of the volume of the set of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-
cal learning theory. For a hicrarchy of hypothesis spaces, the Rashomon ratio can help
modelers to navigate the trade-off between simplicity and accuracy. In particular, we find

% iri that a plot of ical risk vs. ratio forms a ch I-shaped

congestive heart failure? yes
takes aspirin
smoking? no
gender M

exercise? yes

Rashomon curve, whose elbow seems to be a reliable model selection criterion. When the
Rashomon set is large, models that are accurate—but that also have various other useful

— j*w 2O :{fi‘ ] properties—can often be obtained. These models might obey various constraints such as
R o 14 interpretability. fairness. or monotonicity.
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allergies? no ;
number of past strokes 2 *t’f:
diabetes? yes ;
i w
Tabular: Al features are interpretable
i - many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability & - pixels/voxels, words, a bit of a sound wave

o maintenance, etc.
features include counts, categorical data
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https://doi.org/10.1038/542256-019-0048-x maCh 1 ne lntel l lgence

PERSPECTIVE

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

here has been an increasing trend in healthcare and criminal  not. There is a spectrum between fully transparent models (where we
justice to leverage machine learning (ML) for high-stakes pre-  understand how all the variables are jointly related to each other) and
diction applications that deeply impact human lives. Many of  models that are lightly constrained in model form (such as models
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https://doi.org/10.1038/542256-019-0048-x

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

For tabular data: decision trees, linear/additive models/scoring systems
For raw data: mterpretable neural networks

pretable in the f' rst place, is Ilkely to perpetuate bad practu:e and can potentlally cause great harm to society. The way forward
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

here has been an increasing trend in healthcare and criminal  not. There is a spectrum between fully transparent models (where we
justice to leverage machine learning (ML) for high-stakes pre-  understand how all the variables are jointly related to each other) and
diction applications that deeply impact human lives. Many of  models that are lightly constrained in model form (such as models

But what is an interpretable neural network?



Approach 1: A neural network that does

case-based reasoning




of a prototypical clay-
Because this part of the bird colored sparrow
that part

looks like

Why is this bird classified as a
clay-colored sparrow?




“This Looks Like That: deep learning for
interpretable 1mage recognition”

NeurIPS 2019 (spotlight)

arXiv.org > cs > arXiv:1806.10574

Help | Advanced §

Computer Science > Machine Learning

[Submitted on 27 Jun 2018 (v1), last revised 28 Dec 2019 (this version, v5)]

This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, Cynthia Rudin

When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image,
and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us
make our final decision. In this work, we introduce a deep network architecture -- prototypical part network
(ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines
evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar
to the way ornithologists, physicians, and others would explain to people on how to solve challenging image

- Adds a “prototype” layer to a black box, forces
the network to do case-based reasoning. Jonathan
- Prototypes are learned during training.

Daniel



Take any “standard” black box CNN...

5.662 | Common yellowthroat

Similarity score
A 1% J

R R
xrgp Fully connected layer i Output logits

~
Convolutional layers /



And transform it to be interpretable
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And transform it to be interpretable

9
s

Similarity score
Al A J

RS e T 1
Convolutional layers f Prototype layer g, Fully connected layer / Output logits



Why is this bird classfied as a red-bellied woodpecker?

Evidence for this bird being a red-bellied woodpecker:

Original image Prototype Training image Activation map Similarity Class Points
(box showing part that where prototype score connection contributed
looks like prototype) comes from

. 6.499 x 1.180 = 7.669

4.392 x 1.127 = 4.950

3.890 x 1.108 = 4.310

Total points to red-bellied woodpecker: 32.736

Evidence for this bird being a red-cockaded woodpecker:

Original image Prototype  Training image Activation map Similarity Class Points
(box showing part that
looks like prototype)

where prototype score connection contributed

2.452 x 1.046 = 2.565

.{}fjﬁ . 2.125 x 1.091 = 2318
-
J5S

1.945 x 1.069 = 2.079

Total points to red-cockaded woodpecker: 16.886



Base model: DenseNetl161

Why is this bird incorrectly classified as a prothonotary
warbler, instead of a Wilson's warbler?

Evidence for this bird being a Wilson's warbler: Evidence for this bird being a prothonotary warbler:

Original image Prototype  Training image Activation map  Similanity Class Points Original image Prototype  Training image Activation map Similarity Class Points
(box showing part that where prototype score connection contributed (box showing part that where prototype score connection contributed
looks like prototype) comes from looks like prototype) comes from

‘E

1.342 x 1357 = 1.821 2.951 x 1.125 = 3.320

1.189 x 1.247 = 1.483 2.401 x 1.140 = 2.737

1.189 x 1.247 = 1.483 1.636 x 1.209 = 1.978

Total points to Wilson's warbler: 9.744 Total points to prothonotary warbler: 12.391



Base model: VGG-16

Why is this bird classfied as a Wilson's warbler?

Evidence for this bird being a Wilson's warbler:

Original image
(box showing part that
looks like prototype)

Prototype  Training image
where prototyp:
comes from

e o= ') |
E.
w

Activation map  Similarity Class

e score connection contributed

Total points to Wilson's warbler:

Points

3.341 x 1.443 = 4821

3.302 x 1.450 = 4.788

2.159 x 1442 = 3113

19.473

Evidence for this bird being a prothonotary warbler:

Original image Prototype  Training image Activation map Similarity Class Points
(box showing part that where prototype score connection contributed
looks like prototype) comes from

1.722 x 1.105 = 1.903

1.626 x 1.085 = 1.764

1.605 x 1.173 = 1.883

Total points to prothonotary warbler: 10.234



CUB-200

* 200 classes of birds
 Original black box accuracy between 74.6% (VGG16) and 82.3% (Res34).

* Interpretable model’s accuracy between 76.1% (VGG) and 80.2% (Densel21).
Combining several interpretable networks together yields 84.8%, and still
yields an interpretable model.

So even for computer vision, we can still have an interpretable
model of the same accuracy as a black box.

Where might this be useful?



Mammography

* Breast cancer is a leading cause of death in the USA (Kochanek et al 2020)

* Hundreds of thousands of cases diagnosed in the USA each year (> 300K in
2019), causing tens of thousands of deaths each year.
* Mammography is the hardest task in all of radiology (Moss, 2020)
* Radiologists miss ~1/5 of breast cancers

* half of women getting an annual mammogram over 10 years will have a
false positive.

* up to 3/4 of biopsies come back as benign, i.e., potentially unnecessary
surgeries



Our team

u’;j

Chaofan Chen




Our team s

’/S’e::e—r; AT algorithms

have FDA approval for
radiology!! y.

Alina Barnett

Joseph Lo
Professor of Radiology

u‘;st
Chaofan Chen

Daniel Tao

Fides Regina Schwartz, M.D.

S M ’ Yinhao Ren, PhD student



Two different problems

Breast lesion detection Whether to order a biopsy for a lesion?

?

Black box says: Black box says:
There’s no lesion in this image. Don’t get a biopsy.



Why is Al mammography hard?

* Al radiology is hard

* Mammography is just really, really hard.

* No data.

e Confounding: Right for the wrong reasons - hard to deal with.

* How to design a system that would actually be helpful?
* Malignancy vs. Benign is NOT the right problem to solve!



Why is Al mammography hard?

* Al radiology is hard

Mammography is just real
No data.
Confounding: Right for the

How to design a system th
* Malignancy vs. Benign

Healthcare)
I |
INSIGHTS IN IMAGING & INFORMATICS

Algorithm's ‘unexpected’ weakness raises larger concerns about Al's
potential in broader populations

Matt O'Connor | April 05, 2021 | Artificial Intelligence @ o @ Q &

A new investigation revealed “unexpected” shortcomings when using a federally cleared artificial intelligence tool
to detect intracranial hemorrhages. The findings pushed researchers to call for more standardization when
evaluating Al-based clinical decision support platforms.



a: Uninterpretable Approach

Probability of
malignancy: Low

Predict: Benign

\ 4

Because: n/a




a: Uninterpretable Approach

b: Attention only approaches

Probability of
malignancy: Low

v

Probability of
malignancy: Low

Predict: Benign

Because:

\.

Predict: Benign

\ 4

Because: n/a

No other context provided



¢: Our approach (IAIA-BL)

looks like adds
Q __'—.> >+ (0.5 to malignancy score

Indistinct margin

looks like adds

ey - 1.3 t0 malignancy score

Circumscribed margin

\

-

J

Model decomposes to predict
Prototypes margins before malignancy

Probability of
malignancy: Low

Predict: Benign
Because: mass has

primarily
circumscribed margin



Interpretable Al Algorithm for Breast Lesions (IAIA-BL)

- N
Given a region to analyze

Fetch similar
prototypes

o

Calculate a score
from each prototype

1.35

spiculated
0.61

circumscribed

z score from each
prototype
-

e

E circumscribed ‘
i spiculated
indistinct

-

Make prediction based on prototype scores

mass margin scores

(Show prediction and
summary of logic

3 classifiers, prototypes for each class

You don’t need to trust it.




Data Availability

* Public data availability is abysmal
* Low-quality images, outdated equipment, inconsistent labeling

e Some wanted us to hand over IP...



Data

* From Duke!

* 1136 digital screening mammogram images of masses in the breast
from 484 patients at Duke University hospitals.

113671 4647?!

N

125 masses with spiculated margin

220 with indistinct margin

41 with microlobulated margin (didn’t use)

579 with obscured margin (didn’t use)

171 with circumscribed margin Let’s do it!
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Clever Hans performing in 1904

Uses information black box accuracy = “interpretable” accuracy
from healthy tissue




Without fine annotation

Uses information
from healthy tissue

annotate

With fine annotation

Uses information
from lesion

. . fw
Fine annotation e

Radiologists add fine labels for only 37
images (9%)

We generalized ProtoPNet to handle
mixed labelling: fine-grained attention
labels and standard labels

black box accuracy = interpretable accuracy



IAIA-BL Architecture

Each classifier is a generalized ProtoPNet, Combined model is linear

. y Malignant
=2 Z4 Indistinct
»
R
X
cribed
L A 3 J 5 e A X 38 A J
X Y Y T Y Y B Y Y
Test image Convolutional layers f Learned Activation of Similarity / Max  Fully Margin Fully Malignancy logit

prototypes prototype on activation  connected ;  |ogits connected 7,
test image



Example: why correctly classified as circumscribed

Most relevant Learned Prototype

Test image Activation of prototype on testimage = Most activated part of prototype prototypical lesion  self-activation

\adds 4.0x2.7

looks like
=11 to circ.

with similarity
score 4.0

8 _looks like ~adds 1.4x2.6

with similarity = 3.6 to circ.
looks like /j@ -adds 1.2x2.7
with similarity ¥ = 3.2 to circ.

score 1.2




Example: why correctly classified as spiculated

Most relevant Learned Prototype

Test image Activation of prototype on testimage  Most activated part of prototype prototypical lesion  self-activation

i/(\:i?r‘:ssiliﬁﬁarity radds 2.3x8.5
score 2.3 = 20 to spic.
— > - adds 1.0x1.7
with similarity 17 toiSpi

score 1.0

~adds 0.20x1.8
= 0.36 to indst.

'y . | looks like |
o with similarity :

" score 0.20




Preliminary results

* Performance as good or
better than uninterpretable

e (Uninterpretable gets to use

confounding info!)

TPR

TPR

ROC Curves

1.0

0.8 1

0.6 1

0.4 A1

0.2 1

0.0 +=

-
-
£ L
-
-
-
-

black box .~

IAIA-BL 7

p? d IAIA-BL (our model) (area = 0.97)

Original ProtoPNet (area = 0.93)
—— Blackbox VGG-16 (area = 0.95)

1.0

0.2

T T T

0.4 0.6 0.8
FPR

(a) Circumscribed class.

1.0

0.8

0.6 1

0.4 1

0.2 1

0.0 +=

I 7%

black box -~

IAIA-BL

i

IAIA-BL (our model) (area = 0.96)
——— Original ProtoPNet (area = 0.97)
—— Blackbox VGG-16 (area = 0.95)

0.2

0.4 0.6 0.8
FPR

(c) Spiculated class.
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4 - Original ProtoPNet (area = 0.86)
—— Blackbox VGG-16 (area = 0.94)
0.0 += T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
(b) Indistinct class.
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'I
-
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’
,I
02 —— |AIA-BL (our model) (area = 0.84)
Radiologist Estimate (area = 0.91)
.~ Unconstrained Blackbox VGG-16 (area = 0.87)
00 T T T T
00 02 04 06 08 10
FPR
(d) Malignancy.



Why is Al mammography hard?

* Mammography is just really, really hard. gﬁ

* No data. <thank you Joseph> Fine annotation

e Confounding: Right for the wrong reasons - hard to deal with.

* How to design a system that would actually be helpful?
* Malignancy vs. Benign is NOT the right problem to solve!

Decompose the problem.
Interpretable models for each part
Case-based reasoning

What we did NOT do:
- black box + saliency
- malignant vs. benign only



Approach 2: Neural Disentanglement
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[Submitted on 5 Feb 2020 (v1), last revised 19 Oct 2020 (this version, v4)] Zhl R , ‘
Concept Whitening for Interpretable Image Recognition ‘

Zhi Chen, Yijie Bei, Cynthia Rudin

What does a neural network encode about a concept as we traverse through the layers? Interpretability in Webster
machine learning is undoubtedly important, but the calculations of neural networks are very challenging to

understand. Attempts to see inside their hidden layers can either be misleading, unusable, or rely on the

latent space to possess properties that it may not have. In this work, rather than attempting to analyze a

neural network posthoc, we introduce a mechanism, called concept whitening (CW), to alter a given layer of

the network to allow us to better understand the computation leading up to that layer. When a concept

whitening module is added to a CNN, the axes of the latent space are aligned with known concepts of interest.

Bv experiment. we show that CW can provide us a much clearer understandina for how the network aradually

Nature Machine Intelligence, 2020
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CNN’s are not naturally disentangled



latent space

~ concept 1
5“ concept 2
> concept 3
c e concept 4

s
AN >
l neuron 1

Consider the latent space of a Batch Norm layer

Create a vector pointing towards each concept. They are not naturally orthonormal.
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latent space

concept 1
concept 2
concept 3
e concept 4

neuron 2

x
‘

l neuron 1

@

When a Concept Whitening module is added to a CNN,
- the latent space is whitened (decorrelated and normalized)
- the axes of the latent space are aligned with concepts of interest



latent space

concept 1
concept 2
concept 3
e concept 4

neuron 2
>

—
@
oo neuron 1
[ )
[ )

When a Concept Whitening module is added to a CNN,
- the latent space is whitened (decorrelated and normalized)
- the axes of the latent space are aligned with concepts of interest



latent space

concept 1
concept 2
concept 3
e concept 4

neuron 2
i

-
neuron 1

When a Concept Whitening module is added to a CNN,
- the latent space is whitened (decorrelated and normalized)

- the axes of the latent space are aligned with concepts of interest



Most activated 2" |ayer

When CW is added to different layers...

In earlier layers, color and texture information related to the concepts are
represented along the axes



Most activated

Concept information now lies along the axes.




Because this image has warm colors, it lies
mainly along the bed axis at layer 1

bed

airplane

See how an image travels through the layers



Because this image has warm colors, it lies
mainly along the bed axis at layer 1

bed

airplane

See how an image travels through the layers



bed

airplane

See how an image travels through the layers



bed

airplane

See how an image travels through the layers
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See how an image travels through the layers



Advantages of CW over BatchNorm

> No sacrifice in accuracy

- accuracy is on par with standard CNNs

> Easy to use

- warm-start from pretrained model requires only one
additional epoch of further training
- Note: requires training data for the concepts to define the axes

> Disentangles the latent space



Interpretable deep CNNs for computer vision:
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Take-aways

* There is no scientific evidence supporting a tradeoff between
interpretability and accuracy in deep learning.
* Interpretability helps troubleshoot and helps accuracy

* It is @ matter of time until companies try to use black box models for
biopsy decisions...
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[Submitted on 20 Mar 2021]
Interpretable Machine Learning: Fundamental Principles and 10 Grand
Challenges

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, Chudi Zhong

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide
fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this
crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and
background on each problem. Some of these problems are classically important, and some are recent problems that have
arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2)
Optimization of scoring sy ; (3) Placing constraints into generalized additive models to encourage sparsity and
better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5)
Complete supervised di I of neural networks; (6) Complete or even partial of
neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate

vised

physics and other generative or causal constraints; (9) Characterization of the "Rashomon set” of good models; and ( R H
Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientis) e V I e W p a p e r

interested in working in interpretable machine learning.

All papers are here: https://users.cs.duke.edu/~cynthia/

e A R at arXiv.org > ¢s > arXiv:2103.12308

This Looks Like That: Deep Learning for Interpretable Image Recognition

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, Cynthia Rudin
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[Submitted on 23 Mar 2021]

IAIA-BL: A Case-based Interpretable Deep Learning Model for
Classification of Mass Lesions in Digital Mammography

Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao, Chaofan Chen, Yinhao Ren, Joseph Y. Lo, Cynthia Rudin

Interpretability in machine learning models is important in high-stakes decisions, such as whether to order a biopsy
based on a mammographic exam. Mammography poses important challenges that are not present in other computer
vision tasks: datasets are small, confounding information is present, and it can be difficult even for a radiologist to decide
between watchful waiting and biopsy based on a mammogram alone. In this work, we present a framework for
interpretable machine learning-based phy. In addition to predicting whether a lesion is malignant or benign,
our work aims to follow the reasoning processes of radiologists in detecting clinically relevant semantic features of each
image, such as the characteristics of the mass margins. The framework includes a novel interpretable neural network
algorithm that uses case-based reasoning for mammography. Our algorithm can incorporate a combination of data with
whole image labelling and data with pixel-wise annotations, leading to better accuracy and interpretability even with a
small number of images. Our interpretable models are able to highlight the classification-relevant parts of the image,
whereas other methods highlight healthy tissue and confounding information. Our models are decision aids, rather than
decision makers, aimed at better overall human-machine collaboration. We do not observe a loss in mass margin
classification accuracy over a black box neural network trained on the same data.

Thankséf




