Explaining deep learning for identifying structures and biases in computer vision

A Talk at: Interpretable ML in Vision@ICCV 2019.

Joint work with W. Samek, S. Lapuschkin (nee Bach), G. Montavon, K.-R. Müller, and deserving others Alexander Binder

October 28, 2019

What is a possible explanation of a prediction? for images: (Densenet121, Keras+innvestigate, 2019)

• case of images: compute a score for every pixel

- case of images: compute a score for every pixel
 - patch-wise classification: label = 1 if patch contains breast cancer
 - pixel-wise explanation
- general case: score for every dim of an input sample $x = (x_1, \dots, x_d, \dots, x_D)$

What is LRP as explanation? (Densenet121, Keras+innvestigate, 2019)

- given: A. trained model f, B. a prediction f(x) for input $x = (x_1, \ldots, x_d, \ldots, x_D)$.
- general case: LRP computes a relevance score r_d(x) for every input dimension x_d of input x explaining the prediction f(x), such that approximately:

$$f(x) \approx \sum_{d=1}^{D} r_d(x) \leftarrow$$
 decomposition with constraints (1)

heatmap

Layer-wise Relevance Propagation (LRP) (Bach et al., PLOS ONE, 2015)

Trivial rules

Given f(x), can obtain desired decomposition

$$f(\mathbf{x}) = \sum_{d=1}^{D} r_d(\mathbf{x}) \text{ by e.g.}$$
(2)

$$r_d(\mathbf{x}) = f(\mathbf{x})/D \tag{3}$$

$$r_d(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & d = 1\\ 0 & \text{else} \end{cases}$$
(4)

- underdetermined, many non-plausible decompositions
- need additional constraints
- theoretical foundation yielding constraints: Deep Taylor framework
 - Taylor decomposition of every single neuron with customized root points.

Deep Taylor Decomposition

LRP's idea: To robustly explain a model, leverage the neural network structure of the decision function.

Relevance distribution for one neuron: example ϵ -rule

ϵ -rule:

$$R_{i\leftarrow k}(\mathbf{x}) \propto R_k h(w_i x_i) \tag{5}$$

$$R_{i \leftarrow k}(\mathbf{x}) = R_k \frac{w_i x_i}{\sum_{i'} w_{i'} x_{i'} + b + \epsilon \cdot \text{sign}}$$
(6)

- ϵ dampening factor, numerical stabilization
- recommended for fully connected layers and good for LSTMs (cf. Leila Arras et al.)
- NOT recommended for conv layers

Relevance distribution for one neuron: example α - β -rule

β -rule:

$$R_{i \leftarrow k}(\mathbf{x}) \propto R_k h(w_i x_i)$$
(7)
$$R_{i \leftarrow k}(\mathbf{x}) = R_k \left((1+\beta) \frac{(w_i x_i)_+}{\sum_{i'} (w_{i'} x_{i'})_+ + b_+} - \beta \frac{(w_i x_i)_-}{\sum_{i'} (w_{i'} x_{i'})_- + b_-} \right)$$
(8)

• β – controls ratio of negative to positive evidence.

- $\beta = 0$ only positive evidence (analogous to e.g. guided backprop)
- suitable for conv layers (with modifications: batchnorm layers)

Gradient × Input?

Motivation

 Compute an explanation in a single pass without having to optimize or search for a root point.

Gradient \times Input?

Observation: Complex analyses reduce to gradient x input for simple cases.

Question: Does it work in practice?

$\textbf{Gradient} \times \textbf{Input?}$

Model VGG-16

Inception V3

Observation: Explanations are

noisy.

ResNet 50

$\textbf{Gradient} \times \textbf{Input?}$

Two reasons why explanations are noisy:

Not local enough. Too much context introduced when multiplying by the input.

Shattered gradient problem \rightarrow gradient of deep nets has low informative value

Gradient × Input?

The Shattered gradients problem [Montufar'14, Balduzzi'17]

Examples (Densenet121, Keras, 2019)

hybrid rule: $\beta = 0$ for conv layers, $\epsilon = 0.01$ for fc layer

Tell them something interesting!

LRP Applied to Variety of Models

LRP Applied to Variety of Tasks

General Images (Bach' 15, Lapuschkin'16)

Games (Lapuschkin'19)

Faces (Lapuschkin'17)

VQA (Samek'19)

there is a metallic table ; are there any large again metallic shjects analy it ?

Digits (Bach' 15) Image Class '3' Class '9'

Video (Anders'18)

Histopathology (Hägele'19)

Text Analysis (Arras'16 &17) do n't waste your money

Morphing (Selbold'18)

Galt Patterns (Horst'19)

(MRI (Thomas'18)

The value of explanations

- A. application case: identify action strategies in reinforcement learning predictors
- B. general: Identify Biases in Train+Test data (where labels do not help you at all)
- C. medical imaging: Identify Fail Cases without labelling efforts
 → Iterative Dataset Design
- D. application case: LRP in neuroscience

A. application case: identify action strategies in reinforcement learning predictors

Trained a reinforcement learning classifier according to Mnih et al's Nature 2016 paper: Volodymyr Mnih et al. Human-level control through deep reinforcement learning,

Nature 518, pages 529533, 2015

Trained a reinforcement learning classifier according to Mnih et al's Nature 2016 paper.

Explain a test game. LRP helps to discover strategies: building a tunnel.

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Trained a reinforcement learning classifier according to Mnih et al's Nature 2016 paper.

LRP can help to discover strategies: building a tunnel - evolution of focus during training

epoch 0 and 6

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Trained a reinforcement learning classifier according to Mnih et al's Nature 2016 paper.

LRP can help to discover strategies: building a tunnel - evolution during training

epoch 50 and 100

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

LRP can help to find parameters for fast learning of known strategies. Here: impact of M = replay memory size

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn, Nature Communications. 2019

LRP in reinforcement learning

Interpretability methods (here: LRP) can uncover complex relationships

move ball 4 times over switch to activate a score multiplier.

.. if there are any

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

C. general: Identify Biases in Train+Test data (where labels do not help you at all)

At first: general images ... less careful about biases

Fisher DeepNet	aeroplane 79.08% 88.08%	bicycle 66.44% 79.69%	bird 45.90% 80.77%	boat 70.88% 77.20%	bottle 27.64% 35.48%	bus 69.67% 72.71%	car 80.96% 86.30%
Fisher DeepNet	cat 59.92% 81.10%	chair 51.92% 51.04%	cow 47.60% 61.10%	diningtable 58.06% 64.62%	dog 42.28% 76.17%	horse 80.45% 81.60%	motorbike 69.34% 79.33%
Fisher DeepNet	person 85.10% 92.43%	pottedplant 28.62% 49.99%	sheep 49.58% 74.04%	sofa 49.31% 49.48%	train 82.71% 87.07%	tvmonitor 54.33% 67.08%	mAP 59.99% 72.12%

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, Lapuschkin et al., CVPR 2016

Fisher DeepNet	aeroplane 79.08% 88.08%	bicycle 66.44% 79.69%	bird 45.90% 80.77%	boat 70.88% 77.20%	bottle 27.64% 35.48%	bus 69.67% 72.71%	car 80.96% 86.30%
Fisher DeepNet	cat 59.92% 81.10%	chair 51.92% 51.04%	cow 47.60% 61.10%	diningtable 58.06% 64.62%	dog 42.28% 76.17%	horse 80.45% 81.60%	motorbike 69.34% 79.33%
Fisher DeepNet	person 85.10% 92.43%	pottedplant 28.62% 49.99%	sheep 49.58% 74.04%	sofa 49.31% 49.48%	train 82.71% 87.07%	tvmonitor 54.33% 67.08%	mAP 59.99% 72.12%

Image

Fisher Vector

Deep Neural Net

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, Lapuschkin et al., CVPR 2016

SpRAy: semi-automatic discovery of correlations

Lapuschkin et al. Nature Communications 2019: Principle

- compute heatmaps, pool them into a uniform low resolution 20×20
- compute binarized similarity w_{ij} between heatmaps of samples i and j using k = log sample size

$$w_{ij} = \left\{ 1 \quad ext{if } i ext{ is among the } k ext{-nearest neighbors of } j
ight.$$

- symmetrize $W = (w_{ij})_{i,j} \mapsto \max(w_{ij}, w_{ji})$
- compute eigenvalue/vectors of Laplacian $L = I D^{-1/2} W D^{-1/2}$
- inspect eigenvalue gaps

SpRAy: Two Large gaps in low eigenvalues for aeroplane – conspicuous.

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

- t-sne shows one cluster where aeroplanes have strong evidence on edges due to data preparation artefact combined with frequency of blue sky.
- Did not wanted to use center crops: avoid cutting off object parts. So
 edges were padded with border pixels. This is used in one part of the
 aeroplane images as cue.

Confirm that paddings are a cue:

- images with aeroplane predicted: changing borders to random noise destroys aeroplane scores
- images with <u>no</u> aeroplane predicted: changing borders to sky blue color improved aeroplane score, even random but constant color helps.

Confirm that paddings are a cue:

- images with aeroplane predicted: changing borders to random noise destroys aeroplane scores
- images with <u>no</u> aeroplane predicted: changing borders to sky blue color improved aeroplane score, even random but constant color helps.

Result show:

 identified another bias by inspecting heatmaps – this one is hard to see for humans: at borders (psychologically suppressed as irrelevant!) plus constant color in one class

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

C. general: Identify Biases in Train+Test data (where labels do not help you at all)

C. general: Identify Biases in Train+Test data (where labels do not help you at all)

and now to something more Medical datasets relevant please!

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019:

- ?- Are heatmaps of patch-level classifiers *quantifiably* meaningful in terms of resolution at cell nucleus level ? Do they consider nuclei as evidence? How good are heatmaps in terms of measured localization accuracy?
- ?- Are heatmaps useful to resolve biases in histopathology?
 - systematic biases
 - class-correlation biases
 - sampling biases
 - LRP for evaluating the impact of class sampling ratios

Three datasets: Annotate nuclei densely.

BRCA

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019

Three datasets: Annotate nuclei densely.

LUAD (lung)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019

Three datasets: Annotate nuclei densely.

SKCM (Melanoma)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

Train patch classifier, compute heatmaps.

			А	Hore stains	nearmap for class cancer	inage detail
			Cutaneous malignant melanoma (SKCM)			
Total number of patches 26,746 2,748 13,165	Number of tumor patches 19,139 (71.6 %) 2,308 (84.0 %) 4,805 (36.5 %)	F ₁ 91.5% 92.1% 94.6%	Invasive breast cancer (BRCA)			→ 3
			Lung adeno- carcinoma (LUAD)			→
			В	–1.0 –0.5 0.0 Relevance cance	0.5 1.0 r	

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

Tumor Number entity of cases SKCM

BRCA

LUAD

38

72

39

Do we need high res methods like LRP or guided BP ? (a lil bit bashing please be forgiven)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Evaluation Data on nucleus level

OVERVIEW OF THE AVAILABLE ANNOTATIONS FOR ROC CURVES.

Tumor entity	Total number of cells	Number of cancer cells
BRCA	1,803	820
SKCM	3,961	2,247
LUAD	2,722	1,650

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Evaluation Data on the level of nuclei:

- Poor sensitivity on mid ranges for SKCM and BRCA.
- Inspecting heatmaps for SKCM reveals two slides with dense tissue invading lymphocytes – receiving moderately positive scores.
- Points at insufficient sampling of patches with TiLs in training :) .

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

- left heatmap: false positive scores on unlabeled subclass.
- right heatmap: after augmenting training dataset with necrosis samples (negative labeled)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Retraining has statistically visible effect.

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Retraining has a visually visible effect, too.

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Here: *without* necrosis samples.

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Here: *with* necrosis samples.

your version1 labels and test set error cannot discover it

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019

Class-correlation bias

- biases are identifiable
- test set labels are of no help (!) for discovery
- debiasing improves explanations

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation methods, arxiv 2019

Identify Fail Cases without labelling efforts: Evaluate Impact of data augmentation Image scaling ?

orig

100%

80%

Medical Data: Identify Fail Cases without labelling efforts

C. medical imaging: Identify Fail Cases without labelling efforts \longrightarrow Iterative Dataset Design

Why not just using test error ?

some problems: labels very costly, unlabeled data abundant

Identify Fail Cases without labelling efforts

More Importantly:

 decide what unlabeled data to add into next iteration of train and test set

Interpretability for efficiency in the selection step before labelling!

Identify Fail Cases without labelling efforts

More Importantly:

 decide what unlabeled data to add into next iteration of train and test set – precursor to labelling.

Interpretability for efficiency in the selection step before labelling!

Thomas et al. Analyzing Neuroimaging Data Through Recurrent Deep Learning Models, arxiv 2019

Thomas et al.

Analyzing Neuroimaging Data Through Recurrent Deep Learning Models, arxiv 2019

Opinion Paper

S Lapuschkin, S Wäldchen, A Binder, G Montavon, W Samek, KR Müller, Unmasking Clever Hans Predictors and Assessing What Machines Really Learn. Nature Communications, 10:1096, 2019.

Tutorial / Overview Papers

G Montayon, W Samek, KR Müller, Methods for Interpreting and Understanding Deep Neural Networks. Digital Signal Processing, 73:1-15, 2018.

W Samek, T Wegand, and KR Müller, Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models, ITU Journal: ICT Discoveries - Special issue 1 - The Impact of Artificial Intelligence (AI) on Communication Networks and Services, 1(1):39-48, 2018.

Methods Papers

S Bach, A Binder, G Montavon, F Klauschen, KR Müller, W Samek. On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation. PLOS ONE, 10(7):e0130140, 2015.

G Montavon, S Bach, A Binder, W Samek, KR Müller. Explaining NonLinear Classification Decisions with Deep Taylor Decomposition. Pattern Recognition, 65:211-222, 2017

L Arras, G Montavon, K-R Müller, W Samek. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. EMNLP'17 Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA), 159-168, 2017.

A Binder, G Montavon, S Lapuschkin, KR Müller, W Samek. Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers. Artificial Neural Networks and Machine Learning - ICANN 2016, Part II, Lecture Notes in Computer Science, Springer-Verlag, 9887:63-71, 2016.

J Kauffmann, M Esders, G Montavon, W Samek, KR Müller. From Clustering to Cluster Explanations via Neural Networks. arXiv:1906.07633, 2019.

Application to Text

L Arras, F Hom, G Montavon, KR Müller, W Samek, Explaining Predictions of Non-Linear Classifiers in NLP, Workshop on Representation Learning for NLP, Association for Computational Linguistics, 1-7, 2016.

L Arras, F Horn, G Montavon, KR Müller, W Samek, "What is Relevant in a Text Document?": An Interpretable Machine Learning Approach. PLOS ONE, 12(8):e0181142, 2017.

L Arras, G Montavon, K-R Müller, W Samek, Explaining Recurrent Neural Network Predictions in Sentiment Analysis. EMNLP 17 Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA), 159-168, 2017.

Application to Images & Faces

S Lapuschkin, A Binder, G Montavon, KR Müller, Wojciech Samek. Analyzing Classifiers: Fisher Vectors and Deep Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2912-20, 2016.

S Bach, A Binder, KR Müller, W Samek. Controlling Explanatory Heatmap Resolution and Semantics via Decomposition Depth. IEEE International Conference on Image Processing (ICIP), 2271-75, 2016.

F Arbabzadeh, G Montavon, KR Müller, W Samek, Identifying Individual Facial Expressions by Deconstructing a Neural Network. Pattern Recognition - 38th German Conference, GCPR 2016, Lecture Notes in Computer Science, 9796:344-54, Springer International Publishing, 2016.

S Lapuschkin, A Binder, KR Müller, W Samek. Understanding and Comparing Deep Neural Networks for Age and Gender Classification. *IIEEE International Conference on Computer Vision Workshops* (ICCVW), 1629-38, 2017.

C Seibold, W Samek, A Hilsmann, P Eisert. Accurate and Robust Neural Networks for Security Related Applications Exampled by Face Morphing Attacks. arXiv:1806.04265, 2018.

Application to Video

C Anders, G Montavon, W Samek, KR Müller, Understanding Patch-Based Learning by Explaining Predictions. arXiv:1806.06926, 2018.

V Srinhvasan, S Lapuschkin, C Hellge. KR Müller, W Samek. Interpretable Human Action Recognition in Compressed Domain. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1692-96, 2017.

Application to Speech

S Becker, M <u>Ackermann</u>, S <u>Lapuschkin</u>, KR <u>Müller</u>, W <u>Samek</u>, Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals. arXiv:1807.03418, 2018.

Application to the Sciences

F Horst, S Lapuschkin, W Samek, KR Müller, WI Schöllhorn, Explaining the Unique Nature of Individual Gait Patterns with Deep Learning, Scientific Reports, 9:2391, 2019.

I Sturm, S Lapuschkin, W Samek, KR Müller, Interpretable Deep Neural Networks for Single-Trial EEG Classification. Journal of <u>Neuroscience</u> Methods, 274:141-145, 2016.

A Thomas, H Heekeren, KR Müller, W Samek, Interpretable LSTMs For Whole-Brain Neuroimaging Analyses. arXiv:1810.09945, 2018.

A Binder, M <u>Bockmayr</u>, M <u>Hägele</u> and others. Towards computational fluorescence microscopy: Machine learning-based integrated prediction of morphological and molecular tumor profiles. arXiv:1805.11178, 2018

Evaluation Explanations

W Samek, A Binder, G Montavon, S Lapuschkin, KR Müller, Evaluating the visualization of what a Deep Neural Network has learned. *IEEE Transactions on Neural Networks and Learning Systems*, 28(11):2660-2673, 2017.

L Arras, A Osman, KR Müller, W Samek, Evaluating Recurrent Neural Network Explanations. Proceedings of the ACL'19 Workshop on BlackboxNLP, Association for Computational Linguistics, 113-126, 2019.

Software

M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, W Samek, KR Müller, S Dähne, PJ Kindermans, iNNyestigate neural networks1. Journal of Machine Learning Research, 20:1-8, 2019.

S Lapuschkin, A Binder, G Montavon, KR Müller, W Samek, The Layer-wise Relevance Propagation Toolbox for Artificial Neural Networks. Journal of Machine Learning Research, 17(114):1-5, 2016.

New book out

link to the book:

https://www.springer.com/gp/book/

Organization of the book:

- Part I Towards AI Transparency
- Part II Methods for Interpreting AI Systems
- Part III Explaining the Decisions of AI Systems
- Part IV Evaluating Interpretability and Explanations
- Part V Applications of Explainable AI
- 22 Chapters

Tutorial Paper

Montaxon et al., "Methods for interpreting and understanding deep neural networks", Digital Signal Processing, 73:1-5, 2018

Keras Explanation Toolbox https://github.com/albermax/innvestigate

papers, demos, ice cream at: www.explain-ai.org

9783030289539

Questions?!