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What is a possible explanation of a prediction?
for images: (Densenet121, Keras+innvestigate, 2019)

® case of images: compute a score for every pixel

image gradient LRP-a-p
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What is a possible explanation of a prediction?

® case of images: compute a score for every pixel
® patch-wise classification: label = 1 if patch contains breast
cancer
® pixel-wise explanation

® general case: score for every dim of an input sample
X = (X1y...yXdy---,XD)




What is LRP as explanation?
(Densenet121, Keras+innvestigate, 2019)
® given: A. trained model f, B. a prediction f(x) for input
X=(X1,. .y Xdy- -, XD)-
® general case: LRP computes a relevance score ry(x) for every
input dimension x4 of input x explaining the prediction f(x),
such that approximately:

D
f(x) ~ rg(x) < decomposition with constraints (1)

gradient LRP-a-f
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Rooster

prediction f(x

input

Idea: Decompose function :

Explain prediction Fmessessssssss !

(how much each pixel contributes to prediction)

heatmap

Layer-wise Relevance Propagation (LRP)
(Bach et al., PLOS ONE, 2015)



What is a possible explanation of a prediction?

Classification —
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What is a possible explanation of a prediction?

Explanation —
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‘alpha-beta LRP rule (Bach et al. 2018)
Theoretical interpretation R =3 (0 Al 4 3. LAl )R
Deep Taylor Decomposition ‘

(Montavon et al., 2017) -
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Given f(x), can obtain desired decomposition

D

Fx) = D ra(x) by e (2)
d=1

ra(x) = f(x)/D (3)

w-{o e

underdetermined, many non-plausible decompositions
need additional constraints
theoretical foundation yielding constraints: Deep Taylor framework

Taylor decomposition of every single neuron with customized
root points.



Deep Taylor Decomposition

LRP's idea: To robustly explain a model, leverage the neural
network structure of the decision function.

. (RN
1. decom ‘
decision fvpr::e-on ‘
Each explanation step: 2. explain
- easy to find good root point subfunctions
- no gradient shattering Vi

ﬂ:"“ e N
&“a"' explanations -

(Montavon et al., 2017
Montavon et al 2018)



Relevance distribution for one neuron: example e-rule

Forward pass: y(x) Backward pass: compute Relevance R.i(_ k
€T un i
:1‘; : % ;; : w Ry for yy(x)
T . ® y:(z) \ @® R
T @ T @ e e e -
ye(z) = g3, wiz;) Rick
e-rule:
R,'<_k(X) X Rkh(W,'X,') (5)
Wi X
Rick(x) = R« = (6)

> wirxp + b+ € - sign
® ¢ — dampening factor, numerical stabilization

® recommended for fully connected layers and good for LSTMs
(cf. Leila Arras et al.)

® NOT recommended for conv layers



Relevance distribution for one neuron: example a-(-rule

Forward pass: y,(x) Backward pass: compute Relevance R, —k
x w1 T .. from alrea
:1'; : % ;; : M": Ry for ys(x)
w; o] yi () \ ® R
rie——— ~ T, @ —> ’
ye(z) = g3, wiz;) Rick
S-rule:
R,-ek(x) X Rkh(W,'X,') (7)
(wixi)+ (wixi)—
R'kXZRk(l—l—ﬁ - B 8
)= R\ O A= ey, 7 by~ PSS (wia) v 6 ) @

® [ — controls ratio of negative to positive evidence.
® 3 =0 only positive evidence (analogous to e.g. guided backprop)

® suitable for conv layers (with modifications: batchnorm layers)



Gradient x Input?

Motivation
- Compute an explanation in a single pass without having to optimize or
search for a root point.

Gradient x Input

Vii Ri=[VF(x)]i-x x mmmmt i flx)
R = Vf(x)®x : -




Gradient x Input?

Observation: Complex analyses reduce to gradient x input for simple cases.

Perturbation Analysis Taylor Expansions
f(x) = Z?:; Xiw; + b Va0 f(tx) = tf(x)

] |

Gradient x Input
Vi: Ri=[Vf(x)]i-x i ‘hﬂ‘ﬁm‘ A .
R = Vf(x)®x B

Question: Does it work in practice?



Input

Gradient x Input?

Model
VGG-16

Inception V3

ResNet 50

Explanation

&

Observation:
> Explanations are
noisy.




Gradient x Input?

Two reasons why explanations are noisy:

context introduced when

1 Not local enough. Too much
multiplying by the input.

Shattered gradient problem — 0
gradient of deep nets has low \\\/ij/\
informative value



Gradient x Input?

The Shattered gradients problem [Montufar'14, Balduzzi'17]

number of linear
regions grows
exponentially
with depth

depth 1




Examples (Densenet121, Keras, 2019)

img gradient a-f

0

hybrid rule: 8 = 0 for conv layers, ¢ = 0.01 for fc layer



Tell them something interesting!



LRP Applied to Variety of Models

Convolutional NNs Bow models (Arras'17, Ammas ...
(Bach'15, Binder16, Amas'17 ...) (Bach'1s, Lapuschkin'17 ...) Hochraller ot al. 2019)
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LRP Applied to Variety of Tasks

General images (Bach' 15, Laguschiin'16)
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application case: identify action strategies in reinforcement
learning predictors

general: Identify Biases in Train+Test data (where labels do
not help you at all)

medical imaging: ldentify Fail Cases without labelling efforts
— lterative Dataset Design

application case: LRP in neuroscience



application case: identify action strategies in reinforcement
learning predictors

Trained a reinforcement learning classifier according to Mnih et al's
Nature 2016 paper:

Volodymyr Mnih et al. Human-level control through deep
reinforcement learning,

Nature 518, pages 529533, 2015

image set

oa2 2 |1 o993 2 |

Conv net

H 2-n actions
—> U H H —> (classifier)

RL objective for training:
maximize expected future reward




Trained a reinforcement learning classifier according to Mnih et al’s Nature
2016 paper.

Explain a test game. LRP helps to discover strategies: building a tunnel.

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



LRP: DNN and Atari Breakout

Trained a reinforcement learning classifier according to Mnih et al’s Nature
2016 paper.

LRP can help to discover strategies: building a tunnel - evolution of focus
during training

[m (—] C O [— ] =

epoch 0 and 6
Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



LRP: DNN and Atari Breakout

Trained a reinforcement learning classifier according to Mnih et al’s Nature
2016 paper.

LRP can help to discover strategies: building a tunnel - evolution during
training

c d = C

epoch 50 and 100
Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



LRP: DNN and Atari Breakout

LRP can help to find parameters for fast learning of known strategies. Here:

impact of M = replay memory size

Relevance Distribution during Training
Mw500¢

sy,
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S ey v

o
M=1-10° . a Ball b Paddle ¢ Tunnel
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Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



Interpretability methods (here: LRP) can uncover complex
relationships

Atari Pinball:

1 1 OOooOosOo4

move ball 4 times over switch to activate a score multiplier.

. if there are any

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



|dentify Biases in Train+Test data (where labels do not
help you at all)

C. general: Identify Biases in Train+Test data (where labels do
not help you at all)

At first: general images ... less careful about biases



|dentify Biases in Train-+Test data (where labels do not
help you at all)

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 35.48% T211% 86.30%
cat chair cow diningtable dog horse motorbike

Fisher 59.92% 51.92% 47.60% 58.06% 42.28% 80.45% 69.34%
DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% &81 .60% 79.33%
person pottedplant sheep sofa train tviTomitor mAP

Fisher 85.10% 28.62% 49.56% 49.31% 82.71% 54.33% 59.99%
DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, Lapuschkin et
al., CVPR 2016



|dentify Biases in Train-+Test data (where labels do not
help you at all)

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 35.48% T21% 86.30%
cat chair cow diningtable dog horse motorbike
Fisher 59.92% 51.92% 47.60% 58.06% 42.28% 80.45% 69.34%
DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% 81.60% 79.33%
person pottedplant sheep sofa train tvi or mAP
Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%
DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%
Image Fisher Vector Deep Neural Net

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, Lapuschkin et
al., CVPR 2016



SpRAy: semi-automatic discovery of correlations

Lapuschkin et al. Nature Communications 2019:
Principle
® compute heatmaps, pool them into a uniform low resolution 20 x 20

® compute binarized similarity wj between heatmaps of samples i and j
using k = log sample size

wij = {1 if i is among the k-nearest neighbors of j (9)

® symmetrize W = (wy);; — max(w;, wji)
® compute eigenvalue/vectors of Laplacian L =1 — DY 2wp—1/?

® inspect eigenvalue gaps



SpRAy: DNN and Pascal VOC Aeroplane class

per dog aer car bic hor cat tvm pot bus mot cow cha bir she boa tra bot sof din

SpRAy: Two Large gaps in low eigenvalues for aeroplane —
conspicuous.

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



SpRAy: DNN and Pascal VOC Aeroplane class

® t-sne shows one cluster where aeroplanes have strong evidence on edges
due to data preparation artefact combined with frequency of blue sky.

® Did not wanted to use center crops: avoid cutting off object parts. So
edges were padded with border pixels. This is used in one part of the
aeroplane images as cue.



SpRAy: DNN and Pascal VOC Aeroplane class

Confirm that paddings are a cue:

® images with aeroplane predicted: changing borders to random noise
destroys aeroplane scores

® images with no aeroplane predicted: changing borders to sky blue color
improved aeroplane score, even random but constant color helps.



SpRAy: DNN and Pascal VOC Aeroplane class

Confirm that paddings are a cue:

® images with aeroplane predicted: changing borders to random noise
destroys aeroplane scores

® images with no aeroplane predicted: changing borders to sky blue color
improved aeroplane score, even random but constant color helps.



SpRAy: DNN and Pascal VOC Aeroplane class

Non-Aeroplanes

0s
04
+0.39
i 03
i 02
g o1
0.0
=01 -- M
mirror crop sky blue random random mirror crop  sky blue random random
colour  colour  nolse colour  colour  noise

Result show:

® identified another bias by inspecting heatmaps — this one is hard to see
for humans: at borders (psychologically suppressed as irrelevant!) plus
constant color in one class

Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn,

Nature Communications, 2019



|dentify Biases in Train-+Test data (where labels do not
help you at all)

C. general: |dentify Biases in Train+Test data (where labels do
not help you at all)



|dentify Biases in Train+Test data (where labels do not
help you at all)

C. general: Identify Biases in Train+Test data (where labels do
not help you at all)

and now to something more  Medical datasets
relevant please!



|dentify Biases in Train+Test data (where labels do not
help you at all)

Haegele et al., Resolving challenges in deep learning-based analyses
of histopathological images using explanation methods, arxiv 2019:

7— Are heatmaps of patch-level classifiers quantifiably meaningful
in terms of resolution at cell nucleus level ? Do they consider
nuclei as evidence? How good are heatmaps in terms of
measured localization accuracy?

7— Are heatmaps useful to resolve biases in histopathology?

® systematic biases

® class-correlation biases

® sampling biases

® LRP for evaluating the impact of class sampling ratios



Quantifying heatmaps on cell level

Three datasets: Annotate nuclei densely.

* BreastCancer

* Lymphocytes

* Stroma

*  Vessel

*  Necrosis

*  Normal Epithelium
+ undefined

BRCA

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Quantifying heatmaps on cell level
Three datasets: Annotate nuclei densely.

Necrosis
Normal Epithelium

.
.
.
e Vessel
-
*  Atifacts

LUAD (lung)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Quantifying heatmaps on cell level

Three datasets: Annotate nuclei densely.

Tumor
Lymphocyte
Stroma

Vessel

Necrosis

Normal Epithelium

X: SKCM subset

SKCM (Melanoma)

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Quantifying heatmaps on cell level

Train patch classifier, compute heatmaps.

Tumor  Number  Total number Number of F
entity ofcases  of patches  tumor patches

SKCM 38 26746 19,139 (71.6%) 91.5%
BRCA 72 2748 2,308 (84.0%) 92.1%
LUAD 39 13,165 4,805 (36.5%) 94.6%

Cutaneous
malignant
melanoma
(SKCM)

Invasive
breast
cancer
(BRCA)

Lung
adeno-
carcinoma
(LUAD)

B

-10

H&E stains

-05 00
Relevance cancer

Heatmap for class cancer

05 10

Image detail

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019




Quantifying heatmaps on cell level

Do we need high res methods like LRP or guided BP 7 (a lil bit
bashing please be forgiven)
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LUAD (AUC = 0.85)
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Baseline (AUC = 0.50)  SMC=asl)
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04 06 08 10 00 . - - > i
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LRP GradCAM

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Quantifying heatmaps on cell level

Evaluation Data on nucleus level

1.0
08
z
2
OVERVIEW OF THE AVAILABLE ANNOTATIONS FOR ROC CURVES. 206
o
Tumor entity  Total number  Number of S
of cells  cancer cells pa
o
BRCA 1,803 820 04
SKCM 3,961 2247 g
LUAD 1,650 o
=] —— BRCA (AUC = 0.78)
02 ~ LUAD (AUC = 0.85)
—— SKCM (AUC = 0.64)
== SKCM (subset) (AUC = 0.94)
Baseline (AUC = 0.50)
0.0 +
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Quantifying heatmaps on cell level

Evaluation Data on the level of nuclei:

® Poor sensitivity on mid ranges
for SKCM and BRCA. e

® Inspecting heatmaps for
SKCM reveals two slides with
dense tissue invading
lymphocytes — receiving

Detection Sensitivity

= BRCA (AUC = 0.78)

moderately positive scores. LUAD (AUC = 025)

— SKCM (AUC = 0.64)

== SKCM (subset) (AUC = 0.94)

® Points at insufficient sampling aselne (AUC = 0.50
0.0
of patches with TiLs in o0 T svee Lo
training :) .

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Sampling bias

¢ left heatmap: false positive scores on unlabeled subclass.

® right heatmap: after augmenting training dataset with
necrosis samples (negative labeled)

training test heatmap heatmap

image image with bias w/o bias

Sample
bias

No necrosis samples

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Sampling bias

Retraining has statistically visible effect.

. Non-biased
W Biased
0.02
g | 1 11 | I
c
g 0.00
4
& -0.02
Ll
e
o
>
<
-0.04
-0.06

Necotric regions

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Sampling bias

Retraining has a visually visible effect, too.

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Sampling bias

Here: without necrosis samples.

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Sampling bias
Here: with necrosis samples.

your versionl labels and test set error cannot discover it

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



Class-correlation bias

training heatmap heatmap
image with bias w/o bias
N
Class
correlated
bias &

® biases are identifiable
® test set labels are of no help (!) for discovery
© debiasing improves explanations

Haegele et al., Resolving challenges in deep learning-based analyses of histopathological images using explanation

methods, arxiv 2019



|dentify Fail Cases without labelling efforts:
Evaluate Impact of data augmentation
Image scaling ?
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Medical Data: Identify Fail Cases without labelling efforts

C. medical imaging: ldentify Fail Cases without labelling efforts
— Iterative Dataset Design

Why not just using test error 7

® some problems: labels very costly, unlabeled data abundant




Identify Fail Cases without labelling efforts

More Importantly:

® decide what unlabeled data to add into next iteration of train
and test set

® Interpretability for efficiency in the selection step before
labelling!



Identify Fail Cases without labelling efforts

More Importantly:

® decide what unlabeled data to add into next iteration of train
and test set — precursor to labelling.

® Interpretability for efficiency in the selection step before
labelling!



LRP in Neuroscience

Thomas et al.
Analyzing Neuroimaging Data Through Recurrent Deep Learning
Models, arxiv 2019



LRP in Neuroscience

1.
separate volume 2.
TMRI data mlo axial sln(es compute higher-level
slice representations

e H .‘.’ N

............._

time
predicted cognitive state f(x) integrate brain activity
across slices
100% a.
decode ANDANDON /
50% cognitive state I~
9| B
s
time .
brain relevance maps =
I 5 - forward
ll decompose ceeam LRP
decoding decision
I 353 conv. (stride 2)

| 3x3 conv. (stride 1)
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0 = 0.001

Thomas et al.

Analyzing Neuroimaging Data Through Recurrent Deep Learning Models, arxiv 2019
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New book out

Organization of the book:
® Part | Towards Al Transparency
¢ Part Il Methods for Interpreting Al Systems

Explainable Al: . . .
,m';,preﬁngl Explaining and ¢ Part Il Explaining the Decisions of Al Systems

Visualizing Deep Learning

ANAI 11700

® Part IV Evaluating Interpretability and
Explanations

® Part V Applications of Explainable Al
® 22 Chapters

Tutorial Paper
M n et al., “Methods for interp
Digital Signal Processing, 73:1-5, 2018

g and ing deep neural networks”,

Keras Explanation Toolbox
https://github.com/albermax/innvestigate

link to the book:

https://uuu. springer. con/gp/book/ papers, demos, ice cream at: www.explain-ai.org

9783030289539


https://www.springer.com/gp/book/9783030289539
https://www.springer.com/gp/book/9783030289539
www.explain-ai.org

Questions?!



