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Kind of explanations

Analysis 
Given an off-the-shelf networks, 
explain what it knowns, how it 
works, and how it learns 

Win an argument 
The network explains its decision 
to a user, with the goal of 
convincing her 

Communicating a skill 
Explain to a human or machine 
how to solve a certain class of 
problems, in general
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Analysing deep neural networks

• Template matching? 
• Compositionality? 
• Spatial reasoning?

• Generalization? 
• Optimisation?

• What concepts can it recognise? 
• Spurious correlations? 
• Limitations?

How does it do it? How does it learn it?What does a net do?

c1 c2 c3 c4 c5 f6 f7 f8 Gold Finch
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Deep networks 
as encoders c1 c2 c3 c4 c5 f6 f7 f8 Gold Finch

x y
Φ

Φ
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Deep networks 
as encoders

Images Codes

" = ℝm $ = ℝn

x y
Φ



6

Generating iconic 
examples Attribution
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Generating iconic 
examples Attribution



Artificial Intelligence 8

How much information about  does  contain?x y

Multiple images map to 
the same code

Images Codes

" = ℝm $ = ℝn

y

Φ

x3

x2

x1
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Pre-image

Reconstructions form an 
equivalence class of 
images, called a pre-
image 

All pre-images hat are 
indistinguishable for the 
network

Images Codes

" = ℝm $ = ℝn

y

x3

x2

x1 Φ
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Finding pre-images via optimisation
Images Codes

" = ℝm $ = ℝn

yx0

x

min
x

∥Φ(x) − Φ(x0)∥2

Φ
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Natural pre-images
We are interested in pre-images that can realistically be network inputs

Codes

$ = ℝn

y

Φ

Unconstrained pre-image

Peseudo-natural images

Natural images
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Pseudo-natural pre-images

Regularised energy 
 

Constrained optimisation 
 

Posterior probability 
 min

x
∥Φ(x) − Φ(x0)∥2 + ℛ(x) min

x∈"pn

∥Φ(x) − Φ(x0)∥2 p(x |y) ∼δ(Φ(x) − y) ⋅ p(x)

For example TV-norm 

Understanding deep image 
representations by inverting them 
Mahendran Vedaldi, CVPR, 2015 

For example Deep Image Prior 

Deep image prior 
Ulyanov Vedaldi Lempistky, CVPR, 2018 

For example Plug & Play gen. nets 

Plug & play generative networks: 
Conditional iterative generation of 
images in latent space  
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, 
CVPR, 2017
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Generator nets as image parameterisations

Consider a generator network 
with a fixed input  
 
The network parameters  can be 
thought as image parameters 

 

  

Ψ
z0

w

w ⟼ x = Ψ(z0; w) fixed 
random vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image 

parameters

Ψ
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Fit a network to a single example

Start randomly-initialised network 

Given an image , its parameter  is 
recovered by solving the optimisation 
problem 

 

This is similar to learning the network 
from a single image 

x w

min
w

∥x − Ψ(z0; w)∥2
fixed 

random vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image 

parameters

Ψ



Artificial Intelligence 15

Deep image prior

For most  generator networks fitting 
naturally-looking images is easier/
faster than fitting others 

Deep image prior 
Ulyanov Vedaldi Lempistky, CVPR, 2018
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Deep image prior: 
inpainting

For inpainting we only 
reconstruct the visible pixels, 
implicitly infer the others 

min
w

∥m ⊙ (x − Φ(w))∥2

Conv. coding 
Papyan et al. 2017

Deep Image Prior
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The inverter is only given the code; 
it is not learned from data in any way 

Inverting codes 
via the deep 
image prior

19

c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2
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Inverting AlexNet

[Krizhevsky et al. 2012]

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

Conv 1
ReLU 1

LRN 1
Max pool 1

Conv 2
ReLU 2

LRN 2
Max pool 2

Conv 3
ReLU 3

Conv 4
ReLU 4

Conv 5
ReLU 5
Max pool 5

FC 6
ReLU 6

FC 7
ReLU 7

FC 8
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet

39



Artificial Intelligence

Inverting AlexNet
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Inverting AlexNet

fc 8ReLU 6

Original 
Image

Conv 1 Conv 2

Conv 3

Conv 4 Conv 5

FC 6 FC 7 FC 8
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Is the code semantic or visual?

conv5 fc8fc6input

fc8 is a 1000-dimensional class score vector… 
or is it?
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Activation maximization

min
w

− ⟨ek, Φ(Ψ(w))⟩

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Deep Quiz 
https://goo.gl/jURsCP
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https://goo.gl/jURsCP
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Maps 
Simonyan Zisserman Vedaldi, ICLR, 2104 

Understanding deep image representations by inverting them 
Mahendran Vedaldi, CVPR, 2015 

Google “inceptionsm” 
Mordvintsev et al. 2015 

Understanding neural networks through deep visualisation 
Yosinksi et al. ICMLW, 2015 

Plug & play generative networks: Conditional iterative generation of images in latent space  
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, CVPR, 2017 

Deep image prior 
Ulyanov Vedaldi Lempistky, CVPR, 2018 

Activation maximisation for class neurons 

Activation maximization using empirical prior, deconvnet 

Activation maximization and saliency 
 

Inversion at different depths, natural image prior 

Activation maximisation for intermediate neurons 
Improved regularizers, artistic applications (deep dreams) 

Activation maximization using empirical prior, deconvnet 
More regularizers, toolbox 

Strong learned regularizer, sample diversity 
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Effect of the 
prior

Dee
p Im

age
 Prio

r

TV-N
orm

 Prio
r
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The inverter is only given the code; 
it is not learned from data in any way 

Inverting codes 
via the deep 
image prior

53

c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2
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The inverter  is now learned 
using a training set 

   +   

Ψ

min
Ψ

1
N

N

∑
i= 1

∥Ψ(Φ(xi)) − xi∥2

Learning the 
inverter from 
data

54

c1 c2 c3 c4 c5 f6 f7 f8 Patas

x0

 code to inverty0

Inverter

model Φ

Deep generator network Ψ

L2E d4 d3 d2 d1 y0
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Learning the inverter

Popular methods combine: 
• perceptual loss  
• feature rec. loss  
• adversarial loss (GAN)   

•

x0 ≈ x
Φ(x0) ≈ Φ(x)
p(x0) ≈ p(x)

c1 c2 c3 c4 c5

d4 d3 d2 d1

x0

x

Inverting convolutional networks with convolutional 
networks 
Dosovitskiy Brox, CVPR, 2016 
Synthesizing the preferred inputs for neurons in neural 
networks via deep generator networks 
Nguyen, Dosovitskiy, Yosinski, Brox, Clune, NIPS, 2016 

Generating images with perceptual similarity metrics based 
on deep networks 
Dosovitskiy Brox, NIPS, 2016 
Plug & play generative networks: Conditional iterative 
generation of images in latent space  
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, CVPR, 2017
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Diagnostic vs 
aesthetic value
Our goal: diagnose a given 
network  

But inversions also reflect 
the chosen “natural image” 
prior 

Φ

p(x)

Deep Image Prior Plug & Play Gen. Net. Empirical prior

only prior is the 
structure of the gener.

prior comes from training a 
GAN on ImageNet

ImageNet empirical 
distributionp(x) =

Illustrates the model Φ Illustrates the prior p(x)
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Reviews and interfaces

The building blocks of interpretability 
Olah, Satyanarayan, Johnson, Carter, 
Schubert, Ye, Mordvintsev 
Distill, 2018. https://distill.pub/2018/building-
blocks 

Understanding neural networks 
through deep visualisation 
Yosinksi et al. ICMLW, 2015 

Definitely check out Distill!

https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks
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Generating iconic 
examples Attribution
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Attribution

Where is the model looking?

c1 c2 c3 c4 c5 f6 f7 f8 dog

?
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Backprop methods: grad

The “salient” pixels usually light up

Image

Gradient

Deep inside convolutional networks,  Simonyan, Vedaldi, Zisserman, ICLR, 2014

“Black widow” 
class neuron

forward Φ

backward J = dΦ(x)
dx

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
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Early backprop methods

Deconvolution 
 
Visualizing and understanding 
convolutional networks 
Zeiler Fergus, ECCV, 2014

Gradient (backpropagation) 
 
Deep inside convolutional networks: 
Visualising image classification models 
and saliency maps 
Simonyan, Vedaldi, Zisserman, ICLR, 2014

Guided backpropagation 
 
Striving for simplicity: The all 
convolutional net 
Springenberg, Dosovitskiy, Brox, Riedmiller, 
ICLR, 2015
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Backprop: deconv, grad, guided grad

Salient deconvolutional networks, Mahendran Vedaldi, ECCV, 2016

ReLUConv ReLUConv⋯ ⋯

ReLU DeConvNetConvBP ReLUConvBP⋯ ⋯

ReLUBPReLU Guided backpropConvBP ConvBP⋯ ⋯ReLUBPReLU

ReLUBPConvBP ReLUBPConvBP⋯ ⋯ Gradient
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Comparisons

DeConvNet

Guided backprop

Gradient

Salient deconvolutional networks. Mahendran Vedaldi, ECCV, 2016
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Comparisons

Deconvolution 
• Sharp 
• Poor spatial selectivity 

Gradient 
• Blurry 
• OK spatial selectivity 

Guided Backprop 
• Sharp 
• OK spatial sensitivity

Deconvolution Gradient Guided Backprop

Warning: they all still have poor channel selectivity
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Smoother grads

Gradient  

Gradient  input  

Integrated Gradients    
 

SmoothGrads   
 

dΦ(x)
dx

× x ⊙ dΦ(x)
dx

(x − x̄) ⊗ ∫
1

0

dΦ(x̄ − α(x − x̄))
dx dα Axiomatic attribution for deep networks. 

Sundararajan, Taly, Yan. Proc. ICML, 2017.

E [ dΦ(x + ϵ)
dx ], ϵ ∼4 Smoothgrad: removing noise by adding noise. 

Smilkov, Thorat, Víegas, Wattenbeg. CoRR, 2017
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Comparisons
Gradient Integrated Gradients Guided Backprop



Artificial Intelligence 67

Lack of 
channel 
specificity

Visualising any 
output results in 
about the same 
result

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
maximally 

activated neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP random neuron

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
minimally 

activated neuron
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Backprop: 
CAM and 
Grad-CAM
Learning deep features 
for discriminative 
localization 
Zhou, Khosla, Lapedriza, 
Oliva, Torralba, CVPR, 2016 

Grad-CAM: Visual 
explanations from deep 
networks via gradient-
based localization 
Selvaraju, Cogswell, Das, 
Vedantam, Parikh, Batra, 
ICCV, 2017

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP cat class neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP dog class neuron



Artificial Intelligence

ReLU

69

Relevance and excitation backprop

On pixel-wise explanations for non-linear classifier decisions by 
layer-wise relevance propagation 
Bach, Binder, Montavon, Klauschen, Müller. PLOS one, 2015 

Top-down neural attention by excitation backprop 
Zhang, Lin, Brandt, Shen, Sclaroff, ECCV, 2016

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1

Modified backprop rules 
(often a “conservation principle” )∑ = 1  relevance⋯relevance ⋯

activation ⋯  activation⋯
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ReLU

70

Relevance and excitation backprop

Actual rules are more sophisticated, please see references!

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1
r⊤

n− 1 = r⊤
n ⋅ [diag(xn+ ϵ)− 1 ⋅ dxn

dx⊤
n− 1

⋅ diag(xn− 1)]  relevance⋯relevance ⋯

activation ⋯  activation⋯

r⊤
n− 1 = r⊤

n ⋅ [diag(xn+ ϵ)− 1 ⋅ [xn > 0] ⋅ dzn

dx⊤
n− 1

⋅ diag(xn− 1)]
r⊤

n− 1 diag(xn− 1)− 1 = r⊤
n diag(xn+ ϵ)− 1 ⋅ [diag(xn > 0) ⋅ dzn

dx⊤
n− 1 ]

r⊤
m = dxn

dx⊤m
⋅ diag(xm)
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The meaning of attribution maps

For most 
methods, 
attribution is 
defined 
algorithmically 

Hence, the 
meaning of the 
output is not so 
clear

Forward 
evaluation

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1
⋯

ActivationActivation

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1

Attribution 
backprop 
formulas

…

AttributionAttribution

⋯

⋯?
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Grad method = sensitivity analysis

The gradient can be directly 
interpreted as a local linear 
approximation of the model 

Φ(x) ≈ ⟨ dΦ
dx , x − x0⟩ + Φ(x0)

Images Codes

" = ℝm $ = ℝn

y

Φ

x
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Perturbation analysis

Study how  changes up to perturbations  of the input  

Perturbations should be meaningful (interpretable). E.g: 
• Injecting noise 
• Rotating or translating the image 
• Erasing parts of the image 

The representation may 
• Be invariant (stay the same) 
• Be equivariant (respond predictably) 

The analysis may be 
• Local around  and  
• For a distribution  and a fixed  
• For a distribution  and a fixed  
…

Φ(x) π(x) x

x π
p(x) p(π)
p(π) x

Φ

π(x)

x

Φ y′ 

y
input code

perturbation π " "Φ(π)



Artificial Intelligence

Change the input and observe the effect on the output

74

Perturbation analysis

Clear meaning, but can only test a small number of occlusion patterns

Input Occlusion RISE

[Zeiler and Fergus, ECCV 2014; Petsiuk et al., BMVC 2018]
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Extremal Perturbations 

Find regions of a given area that preserves the network’s response the most
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Blur everywhere  response suppressed⇒
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Preserve 10%  response preserved⇒
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Meaningful perturbations

78

We seek the 
“smallest 
elision” that 
maximally 
changes the 
neuron 
activation

(more meaningful)(ineffective)

“cat” probability 
1.00

“cat” probability 
0.01

“cat” probability 
0.5

Original Redact-out Blur-out
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Adversarial perturbations

Neural networks are 
fragile to adversarial 
perturbations 

Adversarial 
perturbations attract 
gradient descent 

Intriguing properties of 
neural networks. Szegedy, 
Zaremba, Sutskever, Bruna, 
Erhan, Goodfellow, Fergus. 
CoRR 2013

Original Redacted Mask
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Extremal perturbations

A mask is optimized to maximally 
excite the network:

argmax
m

Φ(m ⊗ x)

m

m ⊗ x

Φperturb Φ(m ⊗ x)

x

subject to area(m) = a



Artificial Intelligence

Optimizing w.r.t. to an area constraint is challenging 
Here we re-formulate it as matching a rank statistics

81

Area constraint

subject to area(m) = a

vectorize sort

Larea = ∥ vecsort(m) − ra∥2

m
rα

vecsort(m)



Artificial Intelligence 82

Smooth masks

conv(u ; m; k) = 1
Z ∑

v∈Ω
k(u − v)m(v)

maxconv(u ; m; k) = max
v∈Ω

k(u − v)m(v)

smaxu∈Ω;T f(u ) =
∑u f(u )exp( f(u )/T )

∑u exp( f(u )/T )

smoothconv(u ; m; k; T ) = smaxv∈Ω;T k(u − v)m(v)

m(v) : mask
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Smooth masks
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Comparison with prior work on “meaningful perturbations"

Compared to Fong and 
Vedaldi, 2017, we remove all 
regularization terms in the 
energy term. 

Our innovations result in a 
method that’s more 
principled, stable, and 
sensitive.

Ne
w

O
ld
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Algorithm

1. Pick an area   

2. Use SGD to solve the optimization problem for a large : 
 

 

3. If needed, sweep  and repeat

a

λ

argmax
m

Φ(smooth(m) ⊗ x) − λ∥ vecsort(smooth(m)) − ra∥2

a
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Results
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Foreground evidence is usually sufficient
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Large objects are recognised by their details
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Small objects contribute cumulatively
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Suppressing the background may overdrive the network
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Diagnosing networks

Example: the hot 
chocolate is 
recognized via the 
spoon and the truck 
vs the license plate
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Let  be the label 
predicted for image  by the 
deep net 

Empirically, we can find tiny 
perturbations  that change 

 arbitrarily 

y = Φ(x)
x

x + δ
y

δ* = argmin
∥δ∥< ϵ

∥yarbitrary − Φ(x + δ)∥

CNN fragility

92
Intriguing properties of neural networks  
 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus. CoRR,  2013

Trombone Persian cat

҄

Φ Φ

δ*
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Dangerous adversaries

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. Sharif, Bhagavatula, Bauer, Reiter. Proc. 
CSS, 2016.

Robust physical-world attacks on machine learning models. Evtimov, Kevin Eykholt, Li, Prakash, Rahmati, Song. arXiv, 2017.

Adversarial glasses fooling  face recognition Adversarial stickers fooling sign recognition
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Adversarial defence

Method: recognize 
genunie vs adversarial 
images by learning a 
classifier on top of the 
saliency maps 

(Illustrative of 
attribution, not really 
a recommended 
defence strategy!) Perturbation 

analysis

Trombone saliency Persian cat saliency 

Trombone Persian cat

҄

Φ Φ

δ*
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Assessing attribution
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Assessing attribution: pointing game & weak localisation

Goal: measure the spatial correlation between 
attribution maps and object occurrences 

If the correlation is strong: 

• the diagnosed model “understand” the object and 
• the attribution method can tell 

However, if the correlation is poor, either: 

• the diagnoses model does not understand the object or 
• the attribution method fails to tell
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Assessing attribution: neuron sensitivity

Attribution should 
generally result in a 
different output 
depending on which 
neon one wishes to 
visualise.

Go
ld

en
 R

et
rie

ve
r

Ti
ge

r C
at

Gradient DeConvNet Guided BP Grad  Input× Excit. BP Contrastive EBP
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Assessing attribution: parameter sensitivity

Attribution should also 
produce a different 
output if the model 
weights are different — 
e.g. random 
Sanity checks for saliency maps. 
Adebayo, Gilmer, Muelly, Goodfellow, 
Hardt, Kim. Proc. NeurIPS, 2018.
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Assessing attribution: shift invariance

Learning how to explain neural networks: 
PatternNet and PatternAttribution. Kindermans, 
Schütt, Alber, Müller, Erhan, Kim, Dähne. Proc. ICLR, 
2018.  
Making convolutional networks shift-invariant 
again. Zhang. Proc. ICML, 2019.
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Assessing attribution: perturbation analysis

Display
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Attributing channels at intermediate layers
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Spatial attribution

Φ

m

m ⊗ x

perturb Φ(m ⊗ x)

x
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Channel attribution

ΦbΦa

m

perturb

x

ΦbΦa Φ(m ⊗ x)Φ(m ⊗ x)
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Channel attribution

ΦbΦa perturb

x
m ⊗ Φa(x)

Φb(m ⊗ Φa(x))

1
0
⋮
1
0
m

Φa(x)

argmax
m

Φb(m ⊗ Φa(x))

subject to area(m) = a
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Activation “diffing”

[Olah et al., Distill 2017]

Original
Φa(x)∑ m ⊗ Φa(x)

Perturbed
m ⊗ Φa(x)
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Equivariance

Short answer: warping 
image usually reduces to 
sparse linear tf in feature 
space. 
 
Long answer: 
Understanding image 
representations by measuring 
their equivariance and 
equivalence. Lenc Vedaldi. CVPR 
2015 & IJCV 2018

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

g

y1

y2

Mg

featuresimages

?
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Equivalence

Short answer: there 
generally are 
corresponding features 
in different networks 
(up to 1x1 linear tfs). 
 
Long answer 
Understanding image 
representations by 
measuring their equivariance 
and equivalence. Lenc Vedaldi. 
CVPR 2015 & IJCV 2018

c1 c2 c3 c4 c5 fc6

c1 c2 c3 c4

fox

fox

AlexNet

VGG-VD

c1 c2 c3 c3 c4 c5 c5c5c4

fc7 fc8

fc6 fc7 fc8

Are these the same features?
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Collected references
Explainable AI: Interpreting, 
Explaining and Visualizing Deep 
Learning. Samek, Montavon, Vedaldi, 
Hansen, Muller, editors. Springer, 2019
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Software

Captum 
https://pytorch.org/captum/ 

More than just vision 

TorchRay 
https://github.com/facebookresearch/TorchRay 

Attribution, reproducibility, benchmarks

https://pytorch.org/captum
https://github.com/facebookresearch/TorchRay
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Summary
Generating conic examples 

• Inversion vs activation maximization 
• The importance of the prior / regularizer 
• Aesthetic vs diagnostic 

Attribution 
• (Modified) gradient backpropagation 
• Excitation and relevance backpropagation 
• Meaningful perturbation analysis 
• Understanding via approximating models


