
Understanding models via
visualizations and attribution
ANDREA VEDALDI
TUTORIAL, ICCV 2019

(SEVERAL SLIDES BY RUTH FONG)

Artificial Intelligence 2

Kind of explanations

Analysis
Given an off-the-shelf networks,
explain what it knowns, how it
works, and how it learns

Win an argument
The network explains its decision
to a user, with the goal of
convincing her

Communicating a skill
Explain to a human or machine
how to solve a certain class of
problems, in general

Artificial Intelligence 3

Analysing deep neural networks

• Template matching?
• Compositionality?
• Spatial reasoning?

• Generalization?
• Optimisation?

• What concepts can it recognise?
• Spurious correlations?
• Limitations?

How does it do it? How does it learn it?What does a net do?

c1 c2 c3 c4 c5 f6 f7 f8 Gold Finch

Artificial Intelligence 4

Deep networks
as encoders c1 c2 c3 c4 c5 f6 f7 f8 Gold Finch

x y
Φ

Φ

Artificial Intelligence 5

Deep networks
as encoders

Images Codes

" = ℝm $ = ℝn

x y
Φ

6

Generating iconic
examples Attribution

7

Generating iconic
examples Attribution

Artificial Intelligence 8

How much information about does contain?x y

Multiple images map to
the same code

Images Codes

" = ℝm $ = ℝn

y

Φ

x3

x2

x1

Artificial Intelligence 9

Pre-image

Reconstructions form an
equivalence class of
images, called a pre-
image

All pre-images hat are
indistinguishable for the
network

Images Codes

" = ℝm $ = ℝn

y

x3

x2

x1 Φ

Artificial Intelligence 10

Finding pre-images via optimisation
Images Codes

" = ℝm $ = ℝn

yx0

x

min
x

∥Φ(x) − Φ(x0)∥2

Φ

Artificial Intelligence 11

Natural pre-images
We are interested in pre-images that can realistically be network inputs

Codes

$ = ℝn

y

Φ

Unconstrained pre-image

Peseudo-natural images

Natural images

Artificial Intelligence 12

Pseudo-natural pre-images

Regularised energy

Constrained optimisation

Posterior probability
 min

x
∥Φ(x) − Φ(x0)∥2 + ℛ(x) min

x∈"pn

∥Φ(x) − Φ(x0)∥2 p(x |y) ∼δ(Φ(x) − y) ⋅ p(x)

For example TV-norm

Understanding deep image
representations by inverting them
Mahendran Vedaldi, CVPR, 2015

For example Deep Image Prior

Deep image prior
Ulyanov Vedaldi Lempistky, CVPR, 2018

For example Plug & Play gen. nets

Plug & play generative networks:
Conditional iterative generation of
images in latent space
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune,
CVPR, 2017

Artificial Intelligence 13

Generator nets as image parameterisations

Consider a generator network
with a fixed input

The network parameters can be
thought as image parameters

Ψ
z0

w

w ⟼ x = Ψ(z0; w) fixed
random vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image

parameters

Ψ

Artificial Intelligence 14

Fit a network to a single example

Start randomly-initialised network

Given an image , its parameter is
recovered by solving the optimisation
problem

This is similar to learning the network
from a single image

x w

min
w

∥x − Ψ(z0; w)∥2
fixed

random vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image

parameters

Ψ

Artificial Intelligence 15

Deep image prior

For most generator networks fitting
naturally-looking images is easier/
faster than fitting others

Deep image prior
Ulyanov Vedaldi Lempistky, CVPR, 2018

Artificial Intelligence 16

Deep image prior:
inpainting

For inpainting we only
reconstruct the visible pixels,
implicitly infer the others

min
w

∥m ⊙ (x − Φ(w))∥2

Conv. coding
Papyan et al. 2017

Deep Image Prior

17

18

Artificial Intelligence

The inverter is only given the code;
it is not learned from data in any way

Inverting codes
via the deep
image prior

19

c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2

Artificial Intelligence 20

Inverting AlexNet

[Krizhevsky et al. 2012]

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

Conv 1
ReLU 1

LRN 1
Max pool 1

Conv 2
ReLU 2

LRN 2
Max pool 2

Conv 3
ReLU 3

Conv 4
ReLU 4

Conv 5
ReLU 5
Max pool 5

FC 6
ReLU 6

FC 7
ReLU 7

FC 8

Artificial Intelligence

Inverting AlexNet

21

Artificial Intelligence

Inverting AlexNet

22

Artificial Intelligence

Inverting AlexNet

23

Artificial Intelligence

Inverting AlexNet

24

Artificial Intelligence

Inverting AlexNet

25

Artificial Intelligence

Inverting AlexNet

26

Artificial Intelligence

Inverting AlexNet

27

Artificial Intelligence

Inverting AlexNet

28

Artificial Intelligence

Inverting AlexNet

29

Artificial Intelligence

Inverting AlexNet

30

Artificial Intelligence

Inverting AlexNet

31

Artificial Intelligence

Inverting AlexNet

32

Artificial Intelligence

Inverting AlexNet

33

Artificial Intelligence

Inverting AlexNet

34

Artificial Intelligence

Inverting AlexNet

35

Artificial Intelligence

Inverting AlexNet

36

Artificial Intelligence

Inverting AlexNet

37

Artificial Intelligence

Inverting AlexNet

38

Artificial Intelligence

Inverting AlexNet

39

Artificial Intelligence

Inverting AlexNet

40

Artificial Intelligence 41

Inverting AlexNet

fc 8ReLU 6

Original
Image

Conv 1 Conv 2

Conv 3

Conv 4 Conv 5

FC 6 FC 7 FC 8

Artificial Intelligence 42

Is the code semantic or visual?

conv5 fc8fc6input

fc8 is a 1000-dimensional class score vector…
or is it?

Artificial Intelligence 43

Activation maximization

min
w

− ⟨ek, Φ(Ψ(w))⟩

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Artificial Intelligence

Deep Quiz
https://goo.gl/jURsCP

44

https://goo.gl/jURsCP

45

46

47

48

49

50

Artificial Intelligence 51

References
Visualizing higher-layer features of a deep network.
Erhan, Bengio, Courville, U Montreal, 2009

Visualizing and understanding convolutional networks
Zeiler Fergus. Proc. ECCV, 2014.

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency
Maps
Simonyan Zisserman Vedaldi, ICLR, 2104

Understanding deep image representations by inverting them
Mahendran Vedaldi, CVPR, 2015

Google “inceptionsm”
Mordvintsev et al. 2015

Understanding neural networks through deep visualisation
Yosinksi et al. ICMLW, 2015

Plug & play generative networks: Conditional iterative generation of images in latent space
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, CVPR, 2017

Deep image prior
Ulyanov Vedaldi Lempistky, CVPR, 2018

Activation maximisation for class neurons

Activation maximization using empirical prior, deconvnet

Activation maximization and saliency

Inversion at different depths, natural image prior

Activation maximisation for intermediate neurons
Improved regularizers, artistic applications (deep dreams)

Activation maximization using empirical prior, deconvnet
More regularizers, toolbox

Strong learned regularizer, sample diversity

Advanced “data agnostic” regularization

Artificial Intelligence 52

Effect of the
prior

Dee
p Im

age
 Prio

r

TV-N
orm

 Prio
r

Artificial Intelligence

The inverter is only given the code;
it is not learned from data in any way

Inverting codes
via the deep
image prior

53

c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2

Artificial Intelligence

The inverter is now learned
using a training set

 +

Ψ

min
Ψ

1
N

N

∑
i= 1

∥Ψ(Φ(xi)) − xi∥2

Learning the
inverter from
data

54

c1 c2 c3 c4 c5 f6 f7 f8 Patas

x0

 code to inverty0

Inverter

model Φ

Deep generator network Ψ

L2E d4 d3 d2 d1 y0

Artificial Intelligence 55

Learning the inverter

Popular methods combine:
• perceptual loss
• feature rec. loss
• adversarial loss (GAN)

•

x0 ≈ x
Φ(x0) ≈ Φ(x)
p(x0) ≈ p(x)

c1 c2 c3 c4 c5

d4 d3 d2 d1

x0

x

Inverting convolutional networks with convolutional
networks
Dosovitskiy Brox, CVPR, 2016
Synthesizing the preferred inputs for neurons in neural
networks via deep generator networks
Nguyen, Dosovitskiy, Yosinski, Brox, Clune, NIPS, 2016

Generating images with perceptual similarity metrics based
on deep networks
Dosovitskiy Brox, NIPS, 2016
Plug & play generative networks: Conditional iterative
generation of images in latent space
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, CVPR, 2017

Artificial Intelligence 56

Diagnostic vs
aesthetic value
Our goal: diagnose a given
network

But inversions also reflect
the chosen “natural image”
prior

Φ

p(x)

Deep Image Prior Plug & Play Gen. Net. Empirical prior

only prior is the
structure of the gener.

prior comes from training a
GAN on ImageNet

ImageNet empirical
distributionp(x) =

Illustrates the model Φ Illustrates the prior p(x)

Artificial Intelligence 57

Reviews and interfaces

The building blocks of interpretability
Olah, Satyanarayan, Johnson, Carter,
Schubert, Ye, Mordvintsev
Distill, 2018. https://distill.pub/2018/building-
blocks

Understanding neural networks
through deep visualisation
Yosinksi et al. ICMLW, 2015

Definitely check out Distill!

https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks

58

Generating iconic
examples Attribution

Artificial Intelligence 59

Attribution

Where is the model looking?

c1 c2 c3 c4 c5 f6 f7 f8 dog

?

Artificial Intelligence 60

Backprop methods: grad

The “salient” pixels usually light up

Image

Gradient

Deep inside convolutional networks, Simonyan, Vedaldi, Zisserman, ICLR, 2014

“Black widow”
class neuron

forward Φ

backward J = dΦ(x)
dx

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP

Artificial Intelligence 61

Early backprop methods

Deconvolution

Visualizing and understanding
convolutional networks
Zeiler Fergus, ECCV, 2014

Gradient (backpropagation)

Deep inside convolutional networks:
Visualising image classification models
and saliency maps
Simonyan, Vedaldi, Zisserman, ICLR, 2014

Guided backpropagation

Striving for simplicity: The all
convolutional net
Springenberg, Dosovitskiy, Brox, Riedmiller,
ICLR, 2015

Artificial Intelligence 62

Backprop: deconv, grad, guided grad

Salient deconvolutional networks, Mahendran Vedaldi, ECCV, 2016

ReLUConv ReLUConv⋯ ⋯

ReLU DeConvNetConvBP ReLUConvBP⋯ ⋯

ReLUBPReLU Guided backpropConvBP ConvBP⋯ ⋯ReLUBPReLU

ReLUBPConvBP ReLUBPConvBP⋯ ⋯ Gradient

Artificial Intelligence 63

Comparisons

DeConvNet

Guided backprop

Gradient

Salient deconvolutional networks. Mahendran Vedaldi, ECCV, 2016

Artificial Intelligence 64

Comparisons

Deconvolution
• Sharp
• Poor spatial selectivity

Gradient
• Blurry
• OK spatial selectivity

Guided Backprop
• Sharp
• OK spatial sensitivity

Deconvolution Gradient Guided Backprop

Warning: they all still have poor channel selectivity

Artificial Intelligence 65

Smoother grads

Gradient

Gradient input

Integrated Gradients

SmoothGrads

dΦ(x)
dx

× x ⊙ dΦ(x)
dx

(x − x̄) ⊗ ∫
1

0

dΦ(x̄ − α(x − x̄))
dx dα Axiomatic attribution for deep networks.

Sundararajan, Taly, Yan. Proc. ICML, 2017.

E [dΦ(x + ϵ)
dx], ϵ ∼4 Smoothgrad: removing noise by adding noise.

Smilkov, Thorat, Víegas, Wattenbeg. CoRR, 2017

Artificial Intelligence 66

Comparisons
Gradient Integrated Gradients Guided Backprop

Artificial Intelligence 67

Lack of
channel
specificity

Visualising any
output results in
about the same
result

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
maximally

activated neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP random neuron

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
minimally

activated neuron

Artificial Intelligence 68

Backprop:
CAM and
Grad-CAM
Learning deep features
for discriminative
localization
Zhou, Khosla, Lapedriza,
Oliva, Torralba, CVPR, 2016

Grad-CAM: Visual
explanations from deep
networks via gradient-
based localization
Selvaraju, Cogswell, Das,
Vedantam, Parikh, Batra,
ICCV, 2017

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP cat class neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP dog class neuron

Artificial Intelligence

ReLU

69

Relevance and excitation backprop

On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation
Bach, Binder, Montavon, Klauschen, Müller. PLOS one, 2015

Top-down neural attention by excitation backprop
Zhang, Lin, Brandt, Shen, Sclaroff, ECCV, 2016

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1

Modified backprop rules
(often a “conservation principle”)∑ = 1 relevance⋯relevance ⋯

activation ⋯ activation⋯

Artificial Intelligence

ReLU

70

Relevance and excitation backprop

Actual rules are more sophisticated, please see references!

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1
r⊤

n− 1 = r⊤
n ⋅ [diag(xn+ ϵ)− 1 ⋅ dxn

dx⊤
n− 1

⋅ diag(xn− 1)] relevance⋯relevance ⋯

activation ⋯ activation⋯

r⊤
n− 1 = r⊤

n ⋅ [diag(xn+ ϵ)− 1 ⋅ [xn > 0] ⋅ dzn

dx⊤
n− 1

⋅ diag(xn− 1)]
r⊤

n− 1 diag(xn− 1)− 1 = r⊤
n diag(xn+ ϵ)− 1 ⋅ [diag(xn > 0) ⋅ dzn

dx⊤
n− 1]

r⊤
m = dxn

dx⊤m
⋅ diag(xm)

Artificial Intelligence 71

The meaning of attribution maps

For most
methods,
attribution is
defined
algorithmically

Hence, the
meaning of the
output is not so
clear

Forward
evaluation

x12
⋮

xCn

x1,n− 1
⋮

xD,n− 1
⋯

ActivationActivation

r12
⋮

rC2

r1,n− 1
⋮

rD,n− 1

Attribution
backprop
formulas

…

AttributionAttribution

⋯

⋯?

Artificial Intelligence 72

Grad method = sensitivity analysis

The gradient can be directly
interpreted as a local linear
approximation of the model

Φ(x) ≈ ⟨ dΦ
dx , x − x0⟩ + Φ(x0)

Images Codes

" = ℝm $ = ℝn

y

Φ

x

Artificial Intelligence 73

Perturbation analysis

Study how changes up to perturbations of the input

Perturbations should be meaningful (interpretable). E.g:
• Injecting noise
• Rotating or translating the image
• Erasing parts of the image

The representation may
• Be invariant (stay the same)
• Be equivariant (respond predictably)

The analysis may be
• Local around and
• For a distribution and a fixed
• For a distribution and a fixed
…

Φ(x) π(x) x

x π
p(x) p(π)
p(π) x

Φ

π(x)

x

Φ y′

y
input code

perturbation π " "Φ(π)

Artificial Intelligence

Change the input and observe the effect on the output

74

Perturbation analysis

Clear meaning, but can only test a small number of occlusion patterns

Input Occlusion RISE

[Zeiler and Fergus, ECCV 2014; Petsiuk et al., BMVC 2018]

75

Extremal Perturbations

Find regions of a given area that preserves the network’s response the most

Artificial Intelligence 76

Blur everywhere response suppressed⇒

Artificial Intelligence 77

Preserve 10% response preserved⇒

Artificial Intelligence

Meaningful perturbations

78

We seek the
“smallest
elision” that
maximally
changes the
neuron
activation

(more meaningful)(ineffective)

“cat” probability
1.00

“cat” probability
0.01

“cat” probability
0.5

Original Redact-out Blur-out

Artificial Intelligence 79

Adversarial perturbations

Neural networks are
fragile to adversarial
perturbations

Adversarial
perturbations attract
gradient descent

Intriguing properties of
neural networks. Szegedy,
Zaremba, Sutskever, Bruna,
Erhan, Goodfellow, Fergus.
CoRR 2013

Original Redacted Mask

Artificial Intelligence 80

Extremal perturbations

A mask is optimized to maximally
excite the network:

argmax
m

Φ(m ⊗ x)

m

m ⊗ x

Φperturb Φ(m ⊗ x)

x

subject to area(m) = a

Artificial Intelligence

Optimizing w.r.t. to an area constraint is challenging
Here we re-formulate it as matching a rank statistics

81

Area constraint

subject to area(m) = a

vectorize sort

Larea = ∥ vecsort(m) − ra∥2

m
rα

vecsort(m)

Artificial Intelligence 82

Smooth masks

conv(u ; m; k) = 1
Z ∑

v∈Ω
k(u − v)m(v)

maxconv(u ; m; k) = max
v∈Ω

k(u − v)m(v)

smaxu∈Ω;T f(u) =
∑u f(u)exp(f(u)/T)

∑u exp(f(u)/T)

smoothconv(u ; m; k; T) = smaxv∈Ω;T k(u − v)m(v)

m(v) : mask

Artificial Intelligence 83

Smooth masks

Artificial Intelligence 84

Comparison with prior work on “meaningful perturbations"

Compared to Fong and
Vedaldi, 2017, we remove all
regularization terms in the
energy term.

Our innovations result in a
method that’s more
principled, stable, and
sensitive.

Ne
w

O
ld

Artificial Intelligence 85

Algorithm

1. Pick an area

2. Use SGD to solve the optimization problem for a large :

3. If needed, sweep and repeat

a

λ

argmax
m

Φ(smooth(m) ⊗ x) − λ∥ vecsort(smooth(m)) − ra∥2

a

Artificial Intelligence 86

Results

Artificial Intelligence 87

Foreground evidence is usually sufficient

Artificial Intelligence 88

Large objects are recognised by their details

Artificial Intelligence 89

Small objects contribute cumulatively

Artificial Intelligence 90

Suppressing the background may overdrive the network

Artificial Intelligence 91

Diagnosing networks

Example: the hot
chocolate is
recognized via the
spoon and the truck
vs the license plate

Artificial Intelligence

Let be the label
predicted for image by the
deep net

Empirically, we can find tiny
perturbations that change

 arbitrarily

y = Φ(x)
x

x + δ
y

δ* = argmin
∥δ∥< ϵ

∥yarbitrary − Φ(x + δ)∥

CNN fragility

92
Intriguing properties of neural networks  
 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus. CoRR, 2013

Trombone Persian cat

҄

Φ Φ

δ*

Artificial Intelligence 93

Dangerous adversaries

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. Sharif, Bhagavatula, Bauer, Reiter. Proc.
CSS, 2016.

Robust physical-world attacks on machine learning models. Evtimov, Kevin Eykholt, Li, Prakash, Rahmati, Song. arXiv, 2017.

Adversarial glasses fooling face recognition Adversarial stickers fooling sign recognition

Artificial Intelligence 94

Adversarial defence

Method: recognize
genunie vs adversarial
images by learning a
classifier on top of the
saliency maps

(Illustrative of
attribution, not really
a recommended
defence strategy!) Perturbation

analysis

Trombone saliency Persian cat saliency

Trombone Persian cat

҄

Φ Φ

δ*

Artificial Intelligence 95

Assessing attribution

Artificial Intelligence 96

Assessing attribution: pointing game & weak localisation

Goal: measure the spatial correlation between
attribution maps and object occurrences

If the correlation is strong:

• the diagnosed model “understand” the object and
• the attribution method can tell

However, if the correlation is poor, either:

• the diagnoses model does not understand the object or
• the attribution method fails to tell

Artificial Intelligence 97

Assessing attribution: neuron sensitivity

Attribution should
generally result in a
different output
depending on which
neon one wishes to
visualise.

Go
ld

en
 R

et
rie

ve
r

Ti
ge

r C
at

Gradient DeConvNet Guided BP Grad Input× Excit. BP Contrastive EBP

Artificial Intelligence 98

Assessing attribution: parameter sensitivity

Attribution should also
produce a different
output if the model
weights are different —
e.g. random
Sanity checks for saliency maps.
Adebayo, Gilmer, Muelly, Goodfellow,
Hardt, Kim. Proc. NeurIPS, 2018.

Artificial Intelligence 99

Assessing attribution: shift invariance

Learning how to explain neural networks:
PatternNet and PatternAttribution. Kindermans,
Schütt, Alber, Müller, Erhan, Kim, Dähne. Proc. ICLR,
2018.
Making convolutional networks shift-invariant
again. Zhang. Proc. ICML, 2019.

Artificial Intelligence 100

Assessing attribution: perturbation analysis

Display

Artificial Intelligence 101

Attributing channels at intermediate layers

Artificial Intelligence 102

Spatial attribution

Φ

m

m ⊗ x

perturb Φ(m ⊗ x)

x

Artificial Intelligence 103

Channel attribution

ΦbΦa

m

perturb

x

ΦbΦa Φ(m ⊗ x)Φ(m ⊗ x)

Artificial Intelligence 104

Channel attribution

ΦbΦa perturb

x
m ⊗ Φa(x)

Φb(m ⊗ Φa(x))

1
0
⋮
1
0
m

Φa(x)

argmax
m

Φb(m ⊗ Φa(x))

subject to area(m) = a

Artificial Intelligence 105

Activation “diffing”

[Olah et al., Distill 2017]

Original
Φa(x)∑ m ⊗ Φa(x)

Perturbed
m ⊗ Φa(x)

Artificial Intelligence 106

Equivariance

Short answer: warping
image usually reduces to
sparse linear tf in feature
space.

Long answer:
Understanding image
representations by measuring
their equivariance and
equivalence. Lenc Vedaldi. CVPR
2015 & IJCV 2018

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

g

y1

y2

Mg

featuresimages

?

Artificial Intelligence 107

Equivalence

Short answer: there
generally are
corresponding features
in different networks
(up to 1x1 linear tfs).

Long answer
Understanding image
representations by
measuring their equivariance
and equivalence. Lenc Vedaldi.
CVPR 2015 & IJCV 2018

c1 c2 c3 c4 c5 fc6

c1 c2 c3 c4

fox

fox

AlexNet

VGG-VD

c1 c2 c3 c3 c4 c5 c5c5c4

fc7 fc8

fc6 fc7 fc8

Are these the same features?

Artificial Intelligence 108

Collected references
Explainable AI: Interpreting,
Explaining and Visualizing Deep
Learning. Samek, Montavon, Vedaldi,
Hansen, Muller, editors. Springer, 2019

Artificial Intelligence 109

Software

Captum
https://pytorch.org/captum/

More than just vision

TorchRay
https://github.com/facebookresearch/TorchRay

Attribution, reproducibility, benchmarks

https://pytorch.org/captum
https://github.com/facebookresearch/TorchRay

Artificial Intelligence 110

Summary
Generating conic examples

• Inversion vs activation maximization
• The importance of the prior / regularizer
• Aesthetic vs diagnostic

Attribution
• (Modified) gradient backpropagation
• Excitation and relevance backpropagation
• Meaningful perturbation analysis
• Understanding via approximating models

