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Abstract

* This talk describes a family of compositional networks which are
interpretable and perform tasks like object classification and part
recognition.

* Moreover, they outperform conventional deep networks in
challenging situations where there is extreme occlusion.

* For more details: see poster by A. Kortylewski et al. Localizing

Occluders with Compositional Convolutional Networks. Neural
Architecture Workshop. ICCV 28/0Oct.



Background

* Deep Nets are hard to interpret and have unusual failure modes.

In partlcular they are sens:tlve to occlusion and context.

Jlanyu Wang, Zhlshual Zhang, Clhang Xie, Yuyin Zhou, Vittal Premachandran, Jun Zhu, LlngX| Xie,

and Alan VYuille. Visual concepts and compositional voting. Annals of Mathematical Sciences and
Applications, 2018.

See also: A Rosenfield et al. The Elephant in the Room. Arxiv. 2018.



PART 1: Visual Concepts: Internal Representations

* We study internal representations within Deep Nets.

* We restrict ourselves to study vehicles at fixed scale from the Pascal3D+
dataset.

* We showed that visual concepts, encoded by feature populations,
represented subparts of the vehicles.

* We quantified the visual concepts for a series of tasks including semantic
part detection under occlusion.

e J. Wang et al. Visual concepts and compositional voting. Annals of
Mathematical Sciences and Applications, 2018.

* J. Wang et al. Detecting Semantic Parts on Partly Occluded Objects. BMVC.
2017.



Background

* It has been shown (e.g., B. Zhou et al. ICLR 2015) that deep nets

contain internal representations represented by neural features. The
findings included:

* (I) If Deep Nets are trained to perform scene recognition, then the
internal representations correspond to objects.

* (I1) If Deep Nets are trained to perform object recognition, then the
internal representations correspond to object parts.

* For related work, see A. Vedaldi’s presentation in this tutorial session.



Visual Concepts

* We conjectured that subparts of objects are encoded by populations
of feature vectors — instead of by features themselves.

* These visual concepts were found by clustering the feature vectors.
We restricted ourselves to vehicles from Pascal3D+ and fixed the scale
of the objects.
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Visual Concepts: Clustering
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ne clustering was done using k-means with k=200 (alternative
ustering methods, and alternative values of k gave similar results).

ne clustering was done at different levels of the Deep Net. E.g.,

Pool3, Pool4, Pool5. Results were similar for AlexNet and VGG.

* Visual Concepts correspond to parts of objects. VCs at higher layers
correspond to larger parts (e.g., Pool4 wheel, Pool3 wheel-part).
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Visual Concepts: Perceptually Tight

* Findings 1: The visual concepts were perceptually tight. Image patches
corresponding to the same visual concept are very similar.

* We show the closest 6 image patches (left), a random sample of 6
patches from the top 500 image patches (center), and the mean of
the edge map and of the patches of the top 500 patches (right).
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Visual Concepts: Coverage of the Object

* Visual Concepts respond to (cover) almost all parts of the object.
* Here are 44 (out of 170) VCs for cars.

* This can be quantified, by showing that the objects could be
represented in terms of VCs by binary encoding (see later).
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To Explore: We Annotate Semantic Parts.
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V(s as Key-Point, Semantic Part Detectors.

* \VCs were fairly good for detecting key-points and semantic parts of
the Vehicles. But much worse than supervised models.

Bikel 23456789101]1213111AP
SF ||.77/.84].89/.91(.94|.92/.94(.91|.91/.56|.53|.15|.40| .75
13 K-Ps for Bike. | vc |.91/.95].98].96].96|.96|.97].96|.97|.73|.69|.19|.50| .83

* Key-Points.

* Semantic Parts.
Yellow bars show the
best APs for each VC.
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VCs detect subparts of Semantic Parts

* \VCs can act as unsupervised detectors for key-points and semantic-
parts. Their Average Precisions (APs) are weaker than supervised
methods.

* We observe that most VCs respond to several different semantic parts
(typically 1-4). The VCs correspond to subparts of semantic parts
(which are shared). ..| l_c, »
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Combine VCs to detect Semantic Parts

* We design a compositional model for detecting semantic parts. Each
model consists of a set of VCs which fire in different spatial positions.
(Illustrated for object — car — instead of semantic part).

* Compositional Voting: each VC votes for the semantic part
(depending on spatial position).



Semantic Part Detection
with Occlusion

* We introduce occlusion to make semantic part detection more
challenging. Vehicle Occlusion Dataset.

* Our intuition is that Deep Nets have difficulty with occlusion. But
compositional voting is likely to be most robust. The occluded VC will
not respond, but the un-occluded VCs will still vote.

 Compositional voting also includes context, image information
outside the semantic part, because this is also robust.



Detecting Semantic Parts with Occ|u5|on

* In the occlusion dataset semantic
parts

can be: (i) fully occluded (red)
(ii) partially occluded (blue)
(iii) un-occluded (yellow).

* Compositional voting uses VCs on
and off the semantic parts. If a VCis

present cue

deteCted (green) then it VOteS for ‘LdeL)UF ; present cue
the semantic part. If a VCis o © &F

g present cue
mISSIng cue: bike wheel
bike brake

occluded (red) then it gives no vote.

* Note: a semantic part can be
detected even if it is fully occluded.

issing cue:
ground



Compositional Voting: Detect Semantic Parts

* The compositional voting method (VT) outperforms alternatives like
Deep Nets if there is significant occlusion.

* Main idea: explicit representation of subparts (by VC) enables the
algorithm to switch them on and off automatically. This makes them

1 20cc’s,02<r<04 || 30cc’s,04<r<0.6 || 40cc’s,0.6<r<0.8
rObUSt to OCCIUSIO”' Object SV | FR | VT SV | FR [ VT SV [ FR [ VT
airplane 120 | 268 | 23.2 9.7 | 20.5 19.3 7.5 158 15.1
bicycle 44.6 | 65.7 | 71.7 33.7 542 | 663 15.6 | 37.7 | 543
bus 123 | 41.3 | 31.3 7.3 | 325 19.3 36 | 214 9.5
car 134 | 359 | 359 7.7 22.0 | 23.6 4.5 14.2 13.8
motorbike 11.4 35.9 44.1 7.9 28.8 34.7 5.0 19.1 24.1
train 46 | 200 | 217 34 11.1 8.4 2.0 7.2 3.7
mean 164 | 37.6 | 38.0 11.6 | 282 | 28.6 6.4 19.2 | 20.1

* J. Wang et al. BMVC _(201 7). See also, Z. Zhdng et al. CVPR. 2018.



Visual Concepts: Summary

* The Deep Nets encode representations of the parts. These are stored by
the activity patterns of the feature vectors (individual features were less

successful — quantitatively). Note: vehicles only (rigid classes) and fixed
scale.

* Making this representation explicit —e.q., by compositional voting —
enables us to detect semantic parts despite heavy occlusion. The

algorithm can automatically switch off subparts (VCs) if they are not
detected in the correct locations.

* |t is harder for Deep Nets to deal with occluders, because their
representations are not explicit, so it is difficult to switch parts off.

* Can we extend this too classify objects?



Part 2: Compositional Nets for Object Classification

* Can Deep Nets be modified to froduce better internal representations
corresponding to object parts:

* There has been some work in this direction.

* R. Liao, A. Schwing, R. Zemel, and R. Urtasun. Learning deep parsimonious
representations. In Advances in NeurlPSystems. 2016.

* This impose a K-means regularizer on the activity of a layer of neurons. This
effectively encourages visual concepts to form. (But re-implementing this
made I)ittle difference in our case, perhaps because the VCs were already
strong).

* An alternative method — maximizing mutual information — gives the ability
to detect parts of animals (PascalPart Dataset). Q. Zhang, Y-N. Wu, and S-C
Zhu. Interpretable Convolutional Neural Networks. CVPR 2018. (But these
are different types of objects and parts than those we are considering).



Deep Networks and Occlusion

* Deep Nets performance degrades on occluded objects.
* Experiments: Train on un-occluded data and test on Occluded.

* (Why? Because there are an exponential number of ways to occlude
al Architecture talk 28/0Oct).

one_t . . five_t |,. . . nine_t| .
one_ |one_n one_o|five_ |five_n five_o [nine_ |nine_ nine_
zero . . extur |, . . . extur |, . . . extur . Mean
white |oise o bject |white |oise o bject |white |noise o object

VGG |99.2 |979 |979 (97.6 |90.3 |91.6 (90.5 (89.7 |68.8 |54.7 |[52.3 |(48.1 |47.5 |78.9




Ditferent Types of Occluders
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Compositional Nets

* The compositional voting models only work for fixed viewpoint.

* Object appearance depends on the viewpoint. Different VCs will be
activated for different viewpoints and in different spatial locations.

* This requires us to use mixture models for objects. Each mixture component
corresponds to a viewpoint and to a spatial pattern of VCs.

* This must be learned unsupervised
(for fair comparison to Deep Nets).




Two Models: CompNet-Dict & CompNet-Full
Hard-VCs and Soft-VCs

* We describe two types of models for each mixture component.
* The models are generative: (i) hard-VCs and (ii) soft-VCs.

* For the hard-VC model, we represent the object by a binary encoding
using the VCs.

* We learn a dictionary of VCs as before: D - {d,,...,dx}
* We encode each feature vector Jf» by a binary code
‘[')p_.k 1 i"f’g(f,,,dk) > 0.

* Empirical finding: each point on the object are encoded by one or two
VCs (recall, binary encoding by VCs was mentioned earlier).



CompNet-Dict: Generative Model for Hard-VCs

* For each mixture component A" we learn a Bernoulli distribution
for the spatial activation of VCs.

’) .
p(BI4y) = [T p(bylapy) = [Lagrit, (1~ api)' .
p

p.k

* This distribution is factorized (spatially independent). An
approximation to simply the model.

e Recall that b, = 1 if VC k is activated at position p.
* The @y k4 are the parameters of the model (to be leaned).



Occlusion and Robustness

To enable the generative model robust —i.e. able to deal with occlusion — by
allowing a probability that the binary encoding is generated by a random
background model at some locations.

p(BIT) = [ [ p(bp| FG)*rp(by| BG)' 7,

zp € {0, 1},
p(bp| FG) = p(bp|ap,y)p(2p),
p(bp| BG) = p(bp|B)(1 — p(2p)).



The mixture models.

* An object is represented by a mixture of distributions:
p(B|A,, V) = Hp BIAT)"™, Y v = 1, v € {0,1}.

m

* This model can be learnt by the EM algorithm. The number of mixture
components for each object is learnt automatically by clustering. The
intuition is that mixture components have similar VC spatial patterns




CompNet-Full.
Generative Model for Hard-VC encoding

* Generative models are learnt for all objects. The only supervision is
object identity. The learning algorithm involves backprop, clustering,
and EM.

 CompNet-Full is much more effective that standard deep networks if
there is significant occlusion. Explicit representation in terms of parts
allows them to be switched off automatically if there is an occluder
(hard to do for a Deep Net with only explicit representations).

* But this model is not effective at localizing occluders, despite being
robust to them. (Results will be shown later).

* A. Kortylewski et al. In submission. 2019.



CompNet-Full
A Generative Model for Soft-VCs

* We define a second generative model — CompNet-Full, which also
represents objects in terms of mixtures of spatial patterns of VCs.

* Now the mixture components are defined over the feature vectors
using soft-VC encoding. This is more robust than hard-encoding.

* This replaces the Bernoulli distribution over the binary-encodings
(four slides previously) by a von Mises-Fisher mixture distribution
over the feature vectors, where each mixture component

corresponds to a VC.

e Recall that we could learn the VCs by using von Mises-Fisher
distributions to cluster them. (Note: von Mises-Fisher is analogous to
mixtures of Gaussians but for normalized feature vectors).



Von Mises-Fisher Distribution

* We replace the Bernoulli distribution by a distribution over the
feature vectors:

p(F|0,) = Hp (oM, 0) = [ D en k(s
p k

where O, = {Agy,.... Ap . 0} are the model pdrameters at every position p € P on the lattice

S'k s Mk ) ) (5)

of the feature map F', A,, v = 100y - 0 K.y ZA 0 Qpky = l} are the mixture coefficients,
K is the number of mixture components, 0 {Ok — {Sk, px }lk —1,..., K} are the parameters of
the vMF mixture distributions:

g ™
(:bkllk .fp

Z(Sk)

P(fp|Sks px) = s”fP“ =1, ||px| = 1, (6)

e 7 is a normalizing constant.



Von Mises-Fisher versus Bernoulli

Bernoulli Distribution

l_l R
p(B|A,) Hp (bp|op.y) H(} ey (L= Qpky) 77

p.k

Von Mises-Fisher Distribution. Feature vectors normalized to lie on unit sphere.
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Mixtures and Robustness to Occluders

* Objects are represented by a mixture of distributions, where each
mixture is a factorized product of Fisher von-Mises distributions over
the input feature vectors.

* We make this model robust using the same mechanism as before,
which allows some feature vectors to be generated randomly.

p(F|©y,B8) = [ [Ip(fo|FG)p(zp))* [p(fp| BG)p(1 — 2,)]' " z, € {0,1}

P

])(f])|FG) = Z (1‘1).L'.g/1)(.f.1)|51~'-/I'A')

L,
P(i[)lBG) — Z ‘3/~1)(/l1)|51~ .“1")
l‘.



CompNet-Full

* The parameters of this model, and the number of mixture
components, are learnt automatically. Clustering is used to estimate
the number of mixtures (and to group the training data into them).

* This initializes an EM algorithm which learns all the parameters.
* The only supervision is the name of the object.

* (The model can be trained end-to-end, but this is beyond the scope of
this talk).



CompNet Architecture @M @

Visual Concepts

Extract 7

Forward Feature e Conv * Exp
Neural

% » # -
Network

Mixture Model

Feature Map VC Activation

Point-wise dot product # g

FG Score Map

Max Pooling
- Mixture Score  Compact E » Final Score
N o A

BG Score Map

Sum

Point-wise dot product

* Background Score

Background Model




Compare CompNet-Dict, CompNet-Full, and
Deep Net (VGG) on the Occlusion Dataset

* Both CompNet models do than Deep Nets as the Occlusion increases.

 CompNet-Full (soft-VCs) slightly outperforms CompNet-Dict (hard
VCs), but both significantly outperform VGG as occlusion increases.

Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mecan
Occ. Type - W n t 0 W n t 0 w n t 0 -

VGG 992 197919791976 (903[191.6|90.5|89.7|68.8|54.7(52.3|48.147.5]| 78.9
CompMixOcc-Dict | 92.1 |92.7192.3|91.7|92.3|87.4(89.5|88.7(90.6|70.2|80.3|76.9|87.1| 87.1
CompMixOcc-Full | 959 195.8195.2|949|949(95.0[93.3(92.9|92.3|86.8|83.8|80.9|88.1| 91.5
CompNet-Dict 98.3 196.81959196.2|944191.2|91.8|91.3|91.4|71.6|80.7|77.3|87.2| 89.5
CompNet-Full 98.6 |97.9197.5197.3]196.1959|945|94.192.4|86.8|84.0|80.9|87.7| 92.6
Human 100.0 100.0 100.0 08.3 99.5



CompNet-Full: Detect and Localize Occluders

* The CompNets can detect and locate occludes by determining where
the model uses robustness (i.e. where the input feature vectors are
significantly different than those predicted by the model).

* Here are some visual examples (not cherry picked).
* Left: Image Center: CompNet Dict. nght CompNet FuII




Compare CompNets to detect/localize occluders

 CompNet-Full (solid lines) outperforms CompNet-Dict (dashed lines) to
detect/localize occluders, for all types (White, Noise, Texture, Objects).

e Left to Right: Occlusion Levels 20-40%, 40-60 %, 60-80 %.

Occlusion Detection

Occluded area: 20-40%

False positive rate

Occlusion Detection

Occluded area: 40-60%

False positive rate

Occlusion Detection - Occluded area: 60-80%
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0.8 1 0.8 4 0.8 1
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5 8 8
Q white-Dictionary Q white-Dictionary aQ white-Dictionary
$ 0.4 1 white-Full $ 044 white-Full g 041 white-Full
= noise-Dictionary = noise-Dictionary = noise-Dictionary
noise-Full noise-Full noise-Full
0.2 texture-Dictionar 0.2 4 texture-Dictionar 0.2 1 texture-Dictionary
texture-Full texture-Full texture-Full
objects-Dictionar objects-Dictionar objects-Dictionary
0.0 objects-Full 0.0 - objects-Full 0.0 A objects-Full
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate




Summary

e Part 1. We started the internal representations within deep nets, by using
clustering to detect Visual Concepts (VCs).

* This validated that deep nets had internal representations of object parts.
We showed that the VCs could be used to detect key-points and semantic
parts.

* We showed that compositional models — VC plus spatial relations — could
detect semantic parts better than deep nets if there was significant
occlusion.

* Part 2. We developed CompNet architectures that could classify vehicles
with significant occlusion. These models were interpretable. They could
detect/localize occluders, localize subparts (VCs).

» See poster in Neural Architectures Workshop (28/0Oct).



